zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical algorithms for computing eigenvalues of discontinuous Dirac system using sinc-Gaussian method. (English) Zbl 1250.65135
Summary: The eigenvalues of a discontinuous regular Dirac systems with transmission conditions at the point of discontinuity are computed using the sinc-Gaussian method. The error analysis of this method for solving discontinuous regular Dirac system is discussed. It shows that the error decays exponentially in terms of the number of involved samples. Therefore, the accuracy of the new method is higher than the classical sinc-method. Numerical results indicating the high accuracy and effectiveness of these algorithms are presented. Comparisons with the classical sinc-method are given.

65N25Numerical methods for eigenvalue problems (BVP of PDE)
65N15Error bounds (BVP of PDE)
35Q40PDEs in connection with quantum mechanics
81Q05Closed and approximate solutions to quantum-mechanical equations
35P15Estimation of eigenvalues and upper and lower bounds for PD operators
Full Text: DOI
[1] R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, World Scientific, Singapore, Singapore, 1986. · Zbl 0681.76121
[2] A. H. Bhrawy and A. S. Alofi, “A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 62-70, 2012. · Zbl 1244.65099 · doi:10.1016/j.cnsns.2011.04.025
[3] A. H. Bhrawy, A. S. Alofi, and S. I. El-Soubhy, “Spectral shifted Jacobi tau and collocation methods for solving fifth-order boundary value problems,” Abstract and Applied Analysis, Article ID 823273, 14 pages, 2011. · Zbl 1221.65171 · doi:10.1155/2011/823273
[4] A. H. Bhrawy and W. M. Abd-Elhameed, “New algorithm for the numerical solutions of nonlinear third-order differential equations using Jacobi-Gauss collocation method,” Mathematical Problems in Engineering, Article ID 837218, 14 pages, 2011. · Zbl 1217.65155 · doi:10.1155/2011/837218 · eudml:229863
[5] E. H. Doha and W. M. Abd-Elhameed, “Efficient solutions of multidimensional sixth-order boundary value problems using symmetric generalized Jacobi-Galerkin method,” Abstract and Applied Analysis, vol. 2012, Article ID Article ID 749370, 19 pages, 2012. · Zbl 1246.65121 · doi:10.1155/2012/749370
[6] E. H. Doha, A. H. Bhrawy, and R. M. Hafez, “A Jacobi dual-Petrov-Galerkin method for solving some odd-order ordinary differential equations,” Abstract and Applied Analysis, Article ID 947230, 21 pages, 2011. · Zbl 1216.65086 · doi:10.1155/2011/947230 · eudml:223203
[7] A. Imani, A. Aminataei, and A. Imani, “Collocation method via Jacobi polynomials for solving nonlinear ordinary differential equations,” International Journal of Mathematics and Mathematical Sciences, Article ID 673085, 11 pages, 2011. · Zbl 1221.65173 · doi:10.1155/2011/673085
[8] O. N. Litvinenko and V. I. Soshnikov, The Theory of Heterogeneous Lines and their Applications in Radio Engineering, Radio, Moscow, Russia, 1964.
[9] M. H. Annaby and R. M. Asharabi, “Computing eigenvalues of boundary-value problems using sinc-Gaussian method,” Sampling Theory in Signal and Image Processing, vol. 7, no. 3, pp. 293-311, 2008. · Zbl 1182.34106 · http://stsip.org/vol07/no3/vol07no3pp293-311.html
[10] M. H. Annaby and R. M. Asharabi, “Approximating eigenvalues of discontinuous problems by sampling theorems,” Journal of Numerical Mathematics, vol. 16, no. 3, pp. 163-183, 2008. · Zbl 1160.65039 · doi:10.1515/JNUM.2008.008
[11] R. Kh. Amirov, “On a system of Dirac differential equations with discontinuity conditions inside an interval,” Ukrainian Mathematical Journal, vol. 57, no. 5, pp. 601-613, 2005. · Zbl 1102.34068 · doi:10.1007/s11253-005-0222-7
[12] V. Kotelnikov, On the Carrying Capacity of the Either and Wire in Telecommunications, Material for the First All-Union Conference on Questions of Communications, Izd. Red. Upr. Svyazi RKKA, Moscow, Russia, 1933.
[13] C. E. Shannon, “Communication in the presence of noise,” vol. 37, pp. 10-21, 1949.
[14] E. T. Whittaker, “On the functions which are represented by the expansion of the interpolation theory,” Proceedings of the Royal Society of Edinburgh A, vol. 35, pp. 181-194, 1915. · Zbl 45.1275.02
[15] P. L. Butzer, G. Schmeisser, and R. L. Stens, “An introduction to sampling analysis,” in Non Uniform Sampling: Theory and Practices, F. Marvasti, Ed., pp. 17-121, Kluwer, New York, NY, USA, 2001.
[16] M. A. Kowalski, K. A. Sikorski, and F. Stenger, Selected Topics in Approximation and Computation, SIAM, Philadelphia, Pa, USA; Oxford University Press, New York, NY, USA, 1995. · Zbl 0839.41001
[17] J. Lund and K. L. Bowers, Sinc Methods for Quadrature and Differential Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA, 1992. · Zbl 0753.65081 · doi:10.1137/1.9781611971637
[18] F. Stenger, “Numerical methods based on Whittaker cardinal, or sinc functions,” SIAM Review, vol. 23, no. 2, pp. 165-224, 1981. · Zbl 0461.65007 · doi:10.1137/1023037
[19] F. Stenger, Numerical Methods Based On Sinc and Analytic Functions, Springer-Verlag, New York, NY, USA, 1993. · Zbl 0803.65141 · doi:10.1007/978-1-4612-2706-9
[20] M. H. Annaby and M. M. Tharwat, “On computing eigenvalues of second-order linear pencils,” IMA Journal of Numerical Analysis, vol. 27, no. 2, pp. 366-380, 2007. · Zbl 1119.65076 · doi:10.1093/imanum/drl026
[21] M. H. Annaby and M. M. Tharwat, “Sinc-based computations of eigenvalues of Dirac systems,” Behaviour & Information Technology, vol. 47, no. 4, pp. 699-713, 2007. · Zbl 1131.65066 · doi:10.1007/s10543-007-0154-8
[22] M. H. Annaby and M. M. Tharwat, “On the computation of the eigenvalues of Dirac systems,” Calcolo. In press. · Zbl 1256.34077 · doi:10.1007/s10092-011-0052-y
[23] A. Boumenir, “Higher approximation of eigenvalues by the sampling method,” Behaviour & Information Technology, vol. 40, no. 2, pp. 215-225, 2000. · Zbl 0957.65077 · doi:10.1023/A:1022334806027
[24] A. Boumenir, “Sampling and eigenvalues of non-self-adjoint Sturm-Liouville problems,” SIAM Journal on Scientific Computing, vol. 23, no. 1, pp. 219-229, 2001. · Zbl 1006.34079 · doi:10.1137/S1064827500374078
[25] P. L. Butzer and R. L. Stens, “A modification of the Whittaker-Kotelnikov-Shannon sampling series,” Aequationes Mathematicae, vol. 28, no. 3, pp. 305-311, 1985. · Zbl 0582.41004 · doi:10.1007/BF02189424 · eudml:137070
[26] R. Gervais, Q. I. Rahman, and G. Schmeisser, “A bandlimited function simulating a duration-limited one,” in Anniversary Volume on Approximation Theory and Functional Analysis, pp. 355-362, Birkhäuser, Basel, Switzerland, 1984. · Zbl 0547.41016
[27] R. L. Stens, “Sampling by generalized kernels,” in Sampling Theory in Fourier and Signal Analysis: Advanced Topics, J. R. Higgins and R. L. Stens, Eds., pp. 130-157, Oxford University Press, Oxford, UK, 1999.
[28] G. Schmeisser and F. Stenger, “Sinc approximation with a Gaussian multiplier,” Sampling Theory in Signal and Image Processing, vol. 6, no. 2, pp. 199-221, 2007. · Zbl 1156.94326
[29] L. Qian, “On the regularized Whittaker-Kotel’nikov-Shannon sampling formula,” Proceedings of the American Mathematical Society, vol. 131, no. 4, pp. 1169-1176, 2003. · Zbl 1018.94004 · doi:10.1090/S0002-9939-02-06887-9
[30] L. Qian and D. B. Creamer, “A modification of the sampling series with a Gaussian multiplier,” Sampling Theory in Signal and Image Processing, vol. 5, no. 1, pp. 1-19, 2006. · Zbl 1137.41355 · http://stsip.org/pdf/vol05/no1/vol05no1pp1-20.pdf
[31] L. Qian and D. B. Creamer, “Localized sampling in the presence of noise,” Applied Mathematics Letters, vol. 19, no. 4, pp. 351-355, 2006. · Zbl 1095.41020 · doi:10.1016/j.aml.2005.05.013
[32] M. M. Tharwat, A. H. Bhrawy, and A. Yildirim, “Computing eigenvalues of discontinuous Dirac system by using sinc method,” International Journal of Computer Mathematics . In press. · Zbl 1255.65144 · doi:10.1007/s10092-011-0052-y
[33] B. M. Levitan and I. S. Sargsjan, “Introduction to spectral theory: self adjoint ordinary differential operators,” in Translation of Mthematical Monographs, vol. 39, American Mathematical Society, Providence, RI, USA, 1975. · Zbl 0302.47036
[34] B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and Dirac Operators, Kluwer Academic, Dordrecht, The Netherlands, 1991.
[35] M. M. Tharwat, “Discontinuous Sturm-Liouville problems and associated sampling theories,” Abstract and Applied Analysis, Article ID 610232, 30 pages, 2011. · Zbl 1229.94039 · doi:10.1155/2011/610232