Manifestations of the Parseval identity. (English) Zbl 1251.11060

Summary: We make structural elucidation of some interesting arithmetical identities in the context of the Parseval identity.
In the continuous case, following N. P. Romanov [Izv. Akad. Nauk SSSR, Ser. Mat. 10, 3–34 (1946); 15, 131–152 (1951; Zbl 0044.04002)] and A. Wintner [Am. J. Math. 66, 564-578 (1944; Zbl 0061.24902)], we study the Hilbert space of square-integrable functions \(L_{2}(0,1)\) and provide a new complete orthonormal basis – the Clausen system –, which gives rise to a large number of intriguing arithmetical identities as manifestations of the Parseval identity. Especially, we shall refer to the identity of Mikolás-Mordell.
Secondly, we give a new look at an enormous number of elementary mean square identities in number theory, including H. Walum’s identity [Ill. J. Math. 26, 1–3 (1982; Zbl 0464.10030)] and Mikolás’ identity. We show that some of them may be viewed as the Parseval identity. Especially, the mean square formula for the Dirichlet \(L\)-function at 1 is nothing but the Parseval identity with respect to an orthonormal basis constructed by Y. Yamamoto [Algebr. Number Theory, Pap. Kyoto Int. Symp. 1976, 275–289 (1977; Zbl 0371.10028)] for the linear space of all complex-valued periodic functions.


11M20 Real zeros of \(L(s, \chi)\); results on \(L(1, \chi)\)
11M06 \(\zeta (s)\) and \(L(s, \chi)\)
Full Text: DOI


[1] H. Cohen, \(q\)-identities for Maass waveforms, Invent. Math. 91 (1988), no. 3, 409-422. · Zbl 0642.10013
[2] O. Espinosa and V. H. Moll, On some integrals involving the Hurwitz zeta function. I, Ramanujan J. 6 (2002), no. 2, 159-188. · Zbl 1019.33001
[3] O. Espinosa and V. H. Moll, On some integrals involving the Hurwitz zeta function. II, Ramanujan J. 6 (2002), no. 4, 449-468. · Zbl 1156.11333
[4] M. Hashimoto, S. Kanemitsu and M. Toda, On Gauss’ formula for \(\psi\) and finite expressions for the \(L\)-series at 1, J. Math. Soc. Japan 60 (2008), no. 1, 219-236. · Zbl 1211.11097
[5] S. Kanemitsu, J, Ma and W.-P. Zhang, On the discrete mean value of the product of two Dirichlet L-functions, Abh. Math. Sem. Univ. Hamburg. (to appear).
[6] S. Kanemitsu, Y. Tanigawa and J. Zhang, Evaluation of Spannenintegrals of the product of zeta-functions, Integral Transforms Spec. Funct. 19 (2008), no. 1-2, 115-128. · Zbl 1135.11045
[7] S. Kanemitsu and H. Tsukada, Vistas of special functions , World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007. · Zbl 1161.33001
[8] H. Liu and W. Zhang, On the mean value of \(L(m,\chi)L(n,\overline\chi)\) at positive integers \(m,n\geq 1\), Acta Arith. 122 (2006), no. 1, 51-56. · Zbl 1108.11062
[9] S. Louboutin, Quelques formules exactes pour des moyennes de fonctions \(L\) de Dirichlet, Canad. Math. Bull. 36 (1993), no. 2, 190-196. · Zbl 0802.11032
[10] S. Louboutin, On the mean value of \(| L(1,\chi)| ^ 2\) for odd primitive Dirichlet characters, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), no. 7, 143-145. · Zbl 0947.11025
[11] S. Louboutin, The mean value of \(| L(k,\chi)| ^ 2\) at positive rational integers \(k\geq1\), Colloq. Math. 90 (2001), no. 1, 69-76. · Zbl 1013.11049
[12] M. Mikolás, Mellinsche Transformation und Orthogonalität bei \(\zeta(s,u)\). Verallgemeinrung der Riemannschen Funktionalgleichung von \(\zeta(s)\), Acta Sci. Math. Szeged 17 (1956), 143-164. · Zbl 0073.06403
[13] M. Mikolás, Integral formulae of arithmetical characteristics relating to the zeta-function of Hurwitz, Publ. Math. Debrecen 5 (1957), 44-53. · Zbl 0081.27403
[14] L. J. Mordell, Integral formulae of arithmetical character, J. London Math. Soc. 33 (1958), 371-375. · Zbl 0081.27404
[15] N. P. Romanoff, Hilbert spaces and number theory II, Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 131-152.
[16] H. Walum, An exact formula for an average of \(L\)-series, Illinois J. Math. 26 (1982), no. 1, 1-3. · Zbl 0464.10030
[17] A. Wintner, Diophantine approximations and Hilbert’s space, Amer. J. Math. 66 (1944), 564-578. · Zbl 0061.24902
[18] Y. Yamamoto, Dirichlet series with periodic coefficients, in Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976) , 275-289, Japan Soc. Promotion Sci., Tokyo. · Zbl 0371.10028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.