Boucksom, Sebastien; De Fernex, Tommaso; Favre, Charles The volume of an isolated singularity. (English) Zbl 1251.14026 Duke Math. J. 161, No. 8, 1455-1520 (2012). In the paper under review, the authors introduce a new notion of the volume of a normal isolated singularity \( (X,0)\) that, in dimension \(2\) agrees with Wahl’s characteristic number of surface singularities. They show that the volume \(\text{Vol} (X,0)\in \mathbb R _{\geq 0}\) satisfies the following properties:– If \(X\) is \(\mathbb Q\)-Gorenstein, then \(X\) has log canonical singularities if and only if \(\text{Vol} (X,0)=0\).– If \(\phi :(X,0)\to (Y,0)\) is a finite morphism of degree \(e(\phi)\), then \(\text{Vol} (X,0)\geq e(\phi )\text{Vol} (Y,0)\).Two interesting consequences are: 1) If \(\phi :(X,0)\to (X,0)\) is a finite non-invertible morphism, then \(\text{Vol} (X,0)=0\) so that if \(X\) is \(\mathbb Q\)-Gorenstein then \(X\) is log canonical, and 2) If \(V\) is a smooth projective variety with a non-invertible polarized endomorphism \(\phi\), then \(-K_V\) is pseudo-effective. Reviewer: Christopher Hacon (Salt Lake City) Cited in 6 ReviewsCited in 35 Documents MSC: 14J17 Singularities of surfaces or higher-dimensional varieties 14C20 Divisors, linear systems, invertible sheaves 14F18 Multiplier ideals 14B05 Singularities in algebraic geometry 14E99 Birational geometry Keywords:isolated singularities PDF BibTeX XML Cite \textit{S. Boucksom} et al., Duke Math. J. 161, No. 8, 1455--1520 (2012; Zbl 1251.14026) Full Text: DOI arXiv Euclid OpenURL References: [1] C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type , J. Amer. Math. Soc. 23 (2010), 405-468. · Zbl 1210.14019 [2] S. Boucksom, J.-P. Demailly, M. Paun, and T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension , preprint, [math.AG] · Zbl 1267.32017 [3] S. Boucksom, C. Favre, and M. Jonsson, Valuations and plurisubharmonic singularities , Publ. Res. Inst. Math. Sci. 44 (2008), 449-494. · Zbl 1146.32017 [4] S. Boucksom, C. Favre and M. Jonsson. Non-archimedean pluripotential theory over a smooth point , in preparation. · Zbl 1325.32021 [5] A. Corti, ed., Flips for 3- Folds and 4- Folds , Oxford Lecture Ser. Math. Appl. 35 , Oxford Univ. Press, Oxford, 2007. · Zbl 05175029 [6] D. Cox, J. Little, and H. Schenck, Toric Varieties , Grad. Stud. Math. 124 , Amer. Math. Soc., Providence, 2011. · Zbl 1223.14001 [7] S. D. Cutkosky, Irrational asymptotic behaviour of Castelnuovo-Mumford regularity , J. Reine Angew. Math. 522 (2000), 93-103. · Zbl 0951.14001 [8] T. de Fernex and C. Hacon, Singularities on normal varieties , Compos. Math. 145 (2009), 393-414. · Zbl 1179.14003 [9] J.-P. Demailly, L. Ein, and R. Lazarsfeld, A subadditivity property of multiplier ideals , Michigan Math. J. 48 (2000), 137-156. · Zbl 1077.14516 [10] L. Ein, R. Lazarsfeld, and K. E. Smith, Uniform approximation of Abhyankar valuation ideals in smooth function fields , Amer. J. Math. 125 (2003), 409-440. · Zbl 1033.14030 [11] E. Eisenstein, Generalization of the restriction theorem for multiplier ideals , preprint, [math.AG] 1001.2841v1 [12] N. Fakhruddin, Questions on self maps of algebraic varieties , J. Ramanujan Math. Soc. 18 (2003), 109-122. · Zbl 1053.14025 [13] C. Favre, Holomorphic self-maps of singular rational surfaces , Publ. Mat. 54 (2010), 389-432. · Zbl 1200.14066 [14] Y. Fujimoto and N. Nakayama, Compact complex surfaces admitting non-trivial surjective endomorphisms , Tohoku Math. J. (2) 57 (2005), 395-426. · Zbl 1088.32008 [15] M. Fulger, Local volumes on normal algebraic varieties , preprint, [math.AG] 1105.2981v1 [16] W. Fulton, Introduction to Toric Varieties , Ann. of Math. Stud. 131 , Princeton Univ. Press, Princeton, 1993. · Zbl 0813.14039 [17] F. M. Ganter, Properties of - P \cdot P for Gorenstein surface singularities , Math. Z. 223 (1996), 411-419. · Zbl 0901.14006 [18] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen , Math. Ann. 146 (1962), 331-368. · Zbl 0178.42702 [19] A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas , Inst. Hautes Études Sci. Publ. Math. 32 , 1967. · Zbl 0185.49202 [20] S. Ishii, The asymptotic behaviour of plurigenera for a normal isolated singularity , Math. Ann. 286 (1990), 803-812. · Zbl 0668.14002 [21] V. A. Iskovskikh, b-divisors and Shokurov functional algebras (in Russian), Tr. Mat. Inst. Steklova 240 (2003), Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, 8-20; English translation in Proc. Steklov Inst. Math. 240 (2003), no. 1, 4-15. [22] S. Izumi, Linear complementary inequalities for orders of germs of analytic functions , Invent. Math. 65 (1981/82), 459-471. · Zbl 0497.32005 [23] M. Kawakita, On a comparison of minimal log discrepancies in terms of motivic integration , J. Reine Angew. Math. 620 (2008), 55-65. · Zbl 1151.14014 [24] F. W. Knöller, 2- dimensionale Singularitäten und Differentialformen , Math. Ann. 206 (1973), 205-213. · Zbl 0258.32002 [25] J. Kollár, “Singularities of pairs” in Algebraic Geometry (Santa Cruz, 1995) , Proc. Sympos. Pure Math. 62 , Part 1, Amer. Math. Soc., Providence, 1997, 221-287. [26] J. Kollár, “Exercises in the birational geometry of algebraic varieties” in Analytic and Algebraic Geometry , IAS/Park City Math. Ser. 17 , Amer. Math. Soc., Providence, 2010, 495-524. · Zbl 1221.14001 [27] J. Kollár, Book on moduli of surfaces , ongoing project, (accessed 30 April 2012) [28] J. Kollár and S. Mori, Birational geometry of algebraic varieties , Cambridge Tracts in Math. 134 , Cambridge Univ. Press, Cambridge, 1998. [29] A. Küronya, A divisorial valuation with irrational volume , J. Algebra 262 (2003), 413-423. · Zbl 1076.13504 [30] A. Küronya and C. MacLean, Zariski decomposition of b-divisors , to appear in Math. Z., preprint, [math.AG] 0807.2809v2 [31] R. Lazarsfeld, Positivity in Algebraic Geometry, I, II , Ergeb. Math. Grenzgeb. (3) 49 , Springer, Berlin, 2004. · Zbl 1066.14021 [32] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series , Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 783-835. · Zbl 1182.14004 [33] E. J. N. Looijenga, Isolated Singular Points on Complete Intersections , London Math. Soc. Lecture Note Ser. 77 , Cambridge Univ. Press, Cambridge, 1984. · Zbl 0552.14002 [34] M. Morales, Resolution of quasi-homogeneous singularities and plurigenera , Compos. Math. 64 (1987), 311-327. · Zbl 0648.14005 [35] N. Nakayama, On complex normal projective surfaces admitting non-isomorphic surjective endomorphisms , preprint, 2008. [36] T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to the Theory of Toric Varieties , Ergeb. Math. Grenzgeb. (3) 15 , Springer, Berlin, 1988. · Zbl 0628.52002 [37] F. Sakai, Anticanonical models of rational surfaces , Math. Ann. 269 (1984), 389-410. · Zbl 0533.14016 [38] K. Schwede, Test ideals in non -\Bbb Q- Gorenstein rings , Trans. Amer. Math. Soc. 363 (2011), 5925-5941. · Zbl 1276.13008 [39] S. Takagi, Formulas for multiplier ideals on singular varieties , Amer. J. Math. 128 (2006), 1345-1362. · Zbl 1109.14005 [40] S. Tagaki, A subadditivity formula for multiplier ideals associated to log pairs , to appear in Proc. Amer. Math. Soc., preprint, [math.AG] 1103.1179v2 [41] H. Tsuchihashi, Higher-dimensional analogues of periodic continued fractions and cusp singularities , Tohoku Math. J. (2) 35 (1983), 607-639. · Zbl 0585.14004 [42] S. Urbinati, Discrepancies of non-\Bbb Q-Gorenstein varieties , to appear in Mich. Math J., preprint, [math.AG] 1001.2930v3 · Zbl 1260.14042 [43] J. Wahl, A characteristic number for links of surface singularities , J. Amer. Math. Soc. 3 (1990), 625-637. · Zbl 0743.14026 [44] K. Watanabe, On plurigenera of normal isolated singularities, I , Math. Ann. 250 (1980), 65-94. · Zbl 0414.32005 [45] K. Watanabe, “On plurigenera of normal isolated singularities, II” in Complex Analytic Singularities , Adv. Stud. Pure Math. 8 , North-Holland, Amsterdam, 1987, 671-685. · Zbl 0659.32015 [46] O. Zariski and P. Samuel, Commutative Algebra, Vol. II , reprint of the 1960 ed., Grad. Texts in Math. 29 , Springer, New York, 1975. · Zbl 0313.13001 [47] D.-Q. Zhang, Polarized endomorphisms of uniruled varieties , Compos. Math. 146 (2010), 145-168. · Zbl 1198.14019 [48] S.-W. Zhang, “Distribution in algebraic dynamics” in Surveys in Differential Geometry, Vol. X , Surv. Differ. Geom. 10 , Int. Press, Somerville, Mass., 2006, 381-430. · Zbl 1207.37057 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.