×

zbMATH — the first resource for mathematics

An unified approach to the Fekete-Szegő problem. (English) Zbl 1251.30018
In the present paper, the author discusses a general approach to the Fekete-Szegő problem using functions related to conic sections. The result presented here are a generalization of earlier works of the author.

MSC:
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
30C50 Coefficient problems for univalent and multivalent functions of one complex variable
30C80 Maximum principle, Schwarz’s lemma, Lindelöf principle, analogues and generalizations; subordination
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M., Conformal invariants, inequalities and quasiconformal mappings, (1997), Wiley-Interscience · Zbl 0767.30018
[2] Bucka, Cz.; Ciozda, K., On a new subclass of the class S, Ann. polon. math., 38, 153-161, (1973) · Zbl 0266.30014
[3] Bucka, Cz.; Ciozda, K., Sur une classe de fonctions univalentes, Ann. polon. math., 38, 233-238, (1973) · Zbl 0266.30015
[4] Darus, M.; Thomas, D.K., On the fekete – szegö theorem for close-to-convex functions, Math. jpn., 44, 507-511, (1996) · Zbl 0868.30015
[5] Darus, M.; Thomas, D.K., On the fekete – szegö theorem for close-to-convex functions, Math. jpn., 47, 125-132, (1998) · Zbl 0922.30009
[6] Duren, P.L., Univalent functions, (1983), Springer-Verlag New York, Berlin, Heidelberg, Tokyo · Zbl 0398.30010
[7] Fekete, M.; Szegö, G., Eine bemerkung uber ungerade schlichte funktionen, J. lond. math. soc., 8, 85-89, (1933) · JFM 59.0347.04
[8] Kanas, S., Coefficient estimates in subclasses of the caratheodory class related to conical domains, Acta math. univ. Comenian., 74, 2, 149-161, (2005) · Zbl 1138.30301
[9] Kanas, S.; Darwish, H.E., Fekete – szegö problem for starlike and convex functions of complex order, Appl. math. lett., 23, 777-782, (2010) · Zbl 1189.30021
[10] Kanas, S.; Lecko, A., On the fekete – szegö problem and the domain convexity for a certain class of univalent functions, Folia sci. univ. tech. resov., 73, 49-58, (1990) · Zbl 0741.30012
[11] Kanas, S.; Sugawa, T., Conformal representations of the interior of an ellipse, Ann. acad. sci. fenn. math., 31, 329-348, (2006) · Zbl 1098.30011
[12] Kanas, S.; Wiśniowska, A., Conic domains and starlike functions, Rev. roum. math. pures appl., 45, 4, 647-657, (2000) · Zbl 0990.30010
[13] Kanas, S.; Wiśniowska, A., Conic regions and k-uniform convexity, J. comput. appl. math., 105, 327-336, (1999) · Zbl 0944.30008
[14] Kanas, S.; Wiśniowska, A., Conic regions and k-uniform convexity, II, Folia. sci. tech. resov., 170, 65-78, (1998) · Zbl 0995.30013
[15] Koepf, W., On the fekete – szegö problem for close-to-convex functions, Proc. am. math. soc., 101, 89-95, (1987) · Zbl 0635.30019
[16] Livingston, A.E., The coefficients of multivalent close-to-convex functions, Proc. amer. math. soc., 21, 545-552, (1969) · Zbl 0186.39901
[17] London, R.R., Fekete – szegö inequalities for close-to-convex functions, Proc. am. math. soc., 117, 947-950, (1993) · Zbl 0771.30007
[18] Ma, W.; Minda, D., A unified treatment of some special classes of univalent functions, (), 157-169 · Zbl 0823.30007
[19] Srivastava, H.M.; Mishra, A.K.; Das, M.K., The fekete – szegö problem for a subclass of close-to-convex functions, Complex var. theory appl., 44, 145-163, (2001) · Zbl 1021.30014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.