zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Uniqueness for inverse Sturm-Liouville problems with a finite number of transmission conditions. (English) Zbl 1251.34025
Sturm-Liouville operators are considered on a finite interval with the so-called transmission (discontinuous, jump) conditions in interior points. The inverse problem of recovering operators from their spectral characteristics is studied. Uniqueness theorems are provided for this class of inverse problems. The authors use the method and techniques from the monograph [{\it G. Freiling} and {\it V. A. Yurko}, Inverse Sturm-Liouville Problems and their Applications. Huntington, NY: Nova Science Publishers. (2001; Zbl 1037.34005)]; and from the papers [{\it V. A. Yurko}, “Integral transforms connected with discontinuous boundary value problems”, Integral Transforms Spec. Funct. 10, No. 2, 141--164 (2000; Zbl 0989.34015), “On boundary value problems with jump conditions inside the interval”, Differ. Equ. 36, No. 8, 1266--1269 (2000); translation from Differ. Uravn. 36, No. 8, 1139--1140 (2000; Zbl 0991.34028)], where this class of inverse problems was previously well studied. In these three works besides proven uniqueness theorems, also procedures for constructing solutions were provided, and the characterization of the spectral data was obtained.

34A55Inverse problems of ODE
34B24Sturm-Liouville theory
47E05Ordinary differential operators
Full Text: DOI arXiv
[1] Hald, O.: Discontinuous inverse eigenvalue problems, Comm. pure. Appl. math. 37, 539-577 (1984) · Zbl 0541.34012 · doi:10.1002/cpa.3160370502
[2] Willis, C.: Inverse Sturm--Liouville problems with two discontinuities, Inverse problems 1, 263-289 (1985) · Zbl 0603.34018 · doi:10.1088/0266-5611/1/3/010
[3] Kobayashi, M.: A uniqueness proof for discontinuous inverse Sturm--Liouville problems with symmetric potentials, Inverse problems 5, 767-781 (1989) · Zbl 0698.34021 · doi:10.1088/0266-5611/5/5/007
[4] Mukhtarov, O. Sh.; Kadakal, M.; Muhtarov, F. S.: On discontinuous Sturm--Liouville problems with transmission conditions, J. math. Kyoto univ. 44, 779-798 (2004) · Zbl 1098.34069
[5] M. Shahriari, A.Jodayree Akbarfam, Inverse Sturm--Liouville problems with spectral parameter in boundary conditions and transmission conditions. Preprint. · Zbl 1308.34023
[6] Kadakal, M.; Mukhtarov, O. Sh.: Sturm--Liouville problems with discontinuities at two points, Comput. math. Appl. 54, 1367-1379 (2007) · Zbl 1140.34012 · doi:10.1016/j.camwa.2006.05.032
[7] E. Şen, Discontinuous Sturm--Liouville type problems, arxiv:1201.5494v2.
[8] Amirov, R. Kh.: On Sturm--Liouville operators with discontinuity conditions inside an interval, J. math. Anal. appl. 317, 163-176 (2006) · Zbl 1168.34019 · doi:10.1016/j.jmaa.2005.11.042
[9] Akdoğan, Z.; Demirci, M.; Mukhtarov, O. Sh.: Green function of discontinuous boundary-value problem with transmission conditions, Math. meth. Appl. sci. 30, 1719-1738 (2007) · Zbl 1146.34061 · doi:10.1002/mma.867
[10] J. Eckhardt, G. Teschl, Uniqueness results for one-dimensional Schrödinger operators with purely discrete spectra, Trans. Amer. Math. Soc. (in press). · Zbl 1286.34022
[11] Shieh, C. -T.; Yurko, V. A.: Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. math. Anal. appl. 347, 266-272 (2008) · Zbl 1209.34014 · doi:10.1016/j.jmaa.2008.05.097
[12] Wang, Y. P.: An interior inverse problem for Sturm--Liouville operator with eigenparameter dependent boundary conditions, J. math. 42, 395-403 (2011) · Zbl 1243.34030
[13] Yang, C. -F.: An interior inverse problem for discontinuous boundary-value problems, Integral equations operator theory 65, 593-604 (2009) · Zbl 1193.34023 · doi:10.1007/s00020-009-1693-y
[14] Yang, C. -F.; Yang, X. -P.: An interior inverse problem for the Sturm--Liouville operator with discontinuous conditions, Appl. math. Lett. 22, 1315-1319 (2009) · Zbl 1173.34306 · doi:10.1016/j.aml.2008.12.001
[15] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H.: Solvable models in quantum mechanics, (2005) · Zbl 1078.81003
[16] Schmied, M.; Sims, R.; Teschl, G.: On the absolutely continuous spectrum of Sturm--Liouville operators with applications to radial quantum trees, Oper. matrices 2, 417-434 (2008) · Zbl 1197.34042
[17] Freiling, G.; Yurko, V. A.: Inverse Sturm--Liouville problems and their applications, (2001) · Zbl 1037.34005
[18] Levitan, B. M.: Inverse Sturm--Liouville problems, (1987) · Zbl 0749.34001
[19] Teschl, G.: Mathematical methods in quantum mechanics; with applications to Schrödinger operators, Graduate studies in mathematics (2009) · Zbl 1166.81004
[20] J. Eckhardt, G. Teschl, Sturm--Liouville operators with measure-valued coefficients, J. Anal. Math. (in press). · Zbl 1315.34001
[21] Levin, B. Ya.: Lectures on entire functions, Transl. math. Monographs 150 (1996) · Zbl 0856.30001