Bhalekar, Sachin Chaos control and synchronization in fractional-order Lorenz-like system. (English) Zbl 1251.34077 Int. J. Differ. Equ. 2012, Article ID 623234, 16 p. (2012). Summary: The chaotic behavior of the system is studied using analytic and numerical methods. The minimum effective dimension is identified for chaos to exist. The chaos in the proposed system is controlled using simple linear feedback controller. We design a controller to place the eigenvalues of the system Jacobian in a stable region. The effectiveness of the controller in eliminating the chaotic behavior from the state trajectories is also demonstrated using numerical simulations. Furthermore, we synchronize the system using nonlinear feedback. Cited in 3 Documents MSC: 34H10 Chaos control for problems involving ordinary differential equations 34A08 Fractional ordinary differential equations 34C28 Complex behavior and chaotic systems of ordinary differential equations 34D06 Synchronization of solutions to ordinary differential equations Keywords:linear feedback controller; numerical simulations × Cite Format Result Cite Review PDF Full Text: DOI References: [1] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos: An Introduction to Dynamical Systems, Springer, New York, NY, USA, 2008. · Zbl 0867.58043 [2] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196-1199, 1990. · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196 [3] J. Lü and S. Zhang, “Controlling Chen’s chaotic attractor using backstepping design based on parameters identification,” Physics Letters, Section A, vol. 286, no. 2-3, pp. 148-152, 2001. · Zbl 0969.37509 · doi:10.1016/S0375-9601(01)00383-8 [4] C. C. Fuh and P. C. Tung, “Controlling chaos using differential geometric method,” Physical Review Letters, vol. 75, no. 16, pp. 2952-2955, 1995. · doi:10.1103/PhysRevLett.75.2952 [5] E. N. Sanchez, J. P. Perez, M. Martinez, and G. Chen, “Chaos stabilization: an inverse optimal control approach,” Latin American Applied Research, vol. 32, no. 1, pp. 111-114, 2002. [6] J. A. Lu, J. Xie, J. H. Lu, and S. H. Chen, “Control chaos in transition system using sampled-data feedback,” Applied Mathematics and Mechanics, vol. 24, no. 11, pp. 1309-1315, 2003. · Zbl 1061.93052 · doi:10.1007/BF02439654 [7] Y. J. Cao, “A nonlinear adaptive approach to controlling chaotic oscillators,” Physics Letters, Section A, vol. 270, no. 3-4, pp. 171-176, 2000. · doi:10.1016/S0375-9601(00)00299-1 [8] G. Chen and X. Dong, “On feedback control of chaotic continuous-time systems,” IEEE Transactions on Circuits and Systems I, vol. 40, no. 9, pp. 591-601, 1993. · Zbl 0800.93758 · doi:10.1109/81.244908 [9] Q. Zongmin and C. Jiaxing, “A novel linear feedback control approach of Lorenz chaotic system,” in Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation (CIMCA ’06), Jointly with International Conference on Intelligent Agents Web Technologies and International Commerce (IAWTIC ’06), p. 67, December 2006. · doi:10.1109/CIMCA.2006.23 [10] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, no. 8, pp. 821-824, 1990. · Zbl 0938.37019 · doi:10.1103/PhysRevLett.64.821 [11] L. M. Pecora and T. L. Carroll, “Driving systems with chaotic signals,” Physical Review A, vol. 44, no. 4, pp. 2374-2383, 1991. · doi:10.1103/PhysRevA.44.2374 [12] L. Kocarev and U. Parlitz, “General approach for chaotic synchronization with applications to communication,” Physical Review Letters, vol. 74, no. 25, pp. 5028-5031, 1995. · doi:10.1103/PhysRevLett.74.5028 [13] T. L. Carroll, J. F. Heagy, and L. M. Pecora, “Transforming signals with chaotic synchronization,” Physical Review E, vol. 54, no. 5, pp. 4676-4680, 1996. [14] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2001. · Zbl 0998.26002 [15] R. He and P. G. Vaidya, “Implementation of chaotic cryptography with chaotic synchronization,” Physical Review E, vol. 57, no. 2, pp. 1532-1535, 1998. [16] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008 [17] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Detivatives: Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993. · Zbl 0818.26003 [18] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003 [19] J. Sabatier, S. Poullain, P. Latteux, J. L. Thomas, and A. Oustaloup, “Robust speed control of a low damped electromechanical system based on CRONE control: application to a four mass experimental test bench,” Nonlinear Dynamics, vol. 38, no. 1-4, pp. 383-400, 2004. · Zbl 1142.93389 · doi:10.1007/s11071-004-3768-2 [20] M. Caputo and F. Mainardi, “A new dissipation model based on memory mechanism,” Pure and Applied Geophysics, vol. 91, no. 1, pp. 134-147, 1971. · Zbl 1213.74005 · doi:10.1007/BF00879562 [21] F. Mainardi, Y. Luchko, and G. Pagnini, “The fundamental solution of the spacetime fractional diffusion equation,” Fractional Calculus and Applied Analysis, vol. 4, no. 2, pp. 153-192, 2001. · Zbl 1054.35156 [22] O. P. Agrawal, “Solution for a fractional diffusion-wave equation defined in a bounded domain,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 145-155, 2002. · Zbl 1009.65085 · doi:10.1023/A:1016539022492 [23] H. Sun, W. Chen, and Y. Chen, “Variable-order fractional differential operators in anomalous diffusion modeling,” Physica A, vol. 388, no. 21, pp. 4586-4592, 2009. · doi:10.1016/j.physa.2009.07.024 [24] I. S. Jesus and J. A. Tenreiro MacHado, “Fractional control of heat diffusion systems,” Nonlinear Dynamics, vol. 54, no. 3, pp. 263-282, 2008. · Zbl 1210.80008 · doi:10.1007/s11071-007-9322-2 [25] I. S. Jesus, J. A. T. Machado, and R. S. Barbosa, “Control of a heat diffusion system through a fractional order nonlinear algorithm,” Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1687-1694, 2010. · Zbl 1189.93047 · doi:10.1016/j.camwa.2009.08.010 [26] T. J. Anastasio, “The fractional-order dynamics of brainstem vestibulo-oculomotor neurons,” Biological Cybernetics, vol. 72, no. 1, pp. 69-79, 1994. · doi:10.1007/BF00206239 [27] M. D. Ortigueira and J. A. T. Machado, “Fractional calculus applications in signals and systems,” Signal Processing, vol. 86, no. 10, pp. 2503-2504, 2006. · Zbl 1172.94301 · doi:10.1016/j.sigpro.2006.02.001 [28] R. L. Magin, Fractional Calculus in Bioengineering, Begll House Publishers, Redding, Conn, USA, 2006. [29] D. Matignon, “Stability results for fractional differential equations with applications to control processing,” in Proceedings of the Computational Engineering in Systems and Application Multiconference, vol. 2, pp. 963-968, Lille, France, July 1996. [30] A. Kiani-B, K. Fallahi, N. Pariz, and H. Leung, “A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 3, pp. 863-879, 2009. · Zbl 1221.94049 · doi:10.1016/j.cnsns.2007.11.011 [31] I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Physical Review Letters, vol. 91, no. 3, Article ID 034101, 4 pages, 2003. · Zbl 1234.49040 [32] C. Li and G. Peng, “Chaos in Chen’s system with a fractional order,” Chaos, Solitons and Fractals, vol. 22, no. 2, pp. 443-450, 2004. · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013 [33] J. G. Lu, “Chaotic dynamics of the fractional-order Lü system and its synchronization,” Physics Letters, Section A, vol. 354, no. 4, pp. 305-311, 2006. · doi:10.1016/j.physleta.2006.01.068 [34] C. G. Li and G. Chen, “Chaos and hyperchaos in the fractional order Rossler equations,” Physica A, vol. 341, pp. 55-61, 2004. · doi:10.1016/j.physa.2004.04.113 [35] V. Daftardar-Gejji and S. Bhalekar, “Chaos in fractional ordered Liu system,” Computers and Mathematics with Applications, vol. 59, no. 3, pp. 1117-1127, 2010. · Zbl 1189.34081 · doi:10.1016/j.camwa.2009.07.003 [36] X. Wu, J. Li, and G. Chen, “Chaos in the fractional order unified system and its synchronization,” Journal of the Franklin Institute, vol. 345, no. 4, pp. 392-401, 2008. · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003 [37] S. Bhalekar and V. Daftardar-Gejji, “Fractional ordered Liu system with time-delay,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 8, pp. 2178-2191, 2010. · Zbl 1222.34005 · doi:10.1016/j.cnsns.2009.08.015 [38] W. H. Deng and C. P. Li, “Chaos synchronization of the fractional Lü system,” Physica A, vol. 353, no. 1-4, pp. 61-72, 2005. · doi:10.1016/j.physa.2005.01.021 [39] T. Zhou and C. Li, “Synchronization in fractional-order differential systems,” Physica D, vol. 212, no. 1-2, pp. 111-125, 2005. · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012 [40] J. Wang, X. Xiong, and Y. Zhang, “Extending synchronization scheme to chaotic fractional-order Chen systems,” Physica A, vol. 370, no. 2, pp. 279-285, 2006. · doi:10.1016/j.physa.2006.03.021 [41] S. Bhalekar and V. Daftardar-Gejji, “Synchronization of different fractional order chaotic systems using active control,” Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 11, pp. 3536-3546, 2010. · Zbl 1222.94031 · doi:10.1016/j.cnsns.2009.12.016 [42] L. Chongxin, L. Ling, L. Tao, and L. Peng, “A new butterfly-shaped attractor of Lorenz-like system,” Chaos, Solitons and Fractals, vol. 28, no. 5, pp. 1196-1203, 2006. · Zbl 1106.37025 · doi:10.1016/j.chaos.2004.09.111 [43] K. Diethelm, N. J. Ford, and A. D. Freed, “A predictor-corrector approach for the numerical solution of fractional differential equations,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 3-22, 2002. · Zbl 1009.65049 · doi:10.1023/A:1016592219341 [44] K. Diethelm, “An algorithm for the numerical solution of differential equations of fractional order,” Electronic Transactions on Numerical Analysis, vol. 5, pp. 1-6, 1997. · Zbl 0890.65071 [45] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, pp. 229-248, 2002. · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194 [46] M. S. Tavazoei and M. Haeri, “Regular oscillations or chaos in a fractional order system with any effective dimension,” Nonlinear Dynamics, vol. 54, no. 3, pp. 213-222, 2008. · Zbl 1187.70043 · doi:10.1007/s11071-007-9323-1 [47] M. S. Tavazoei and M. Haeri, “A necessary condition for double scroll attractor existence in fractional-order systems,” Physics Letters, Section A, vol. 367, no. 1-2, pp. 102-113, 2007. · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081 [48] L. O. Chua, M. Komuro, and T. Matsumoto, “The double-scroll family,” IEEE Transactions on Circuits and Systems, vol. 33, no. 11, pp. 1072-1118, 1986. · Zbl 0634.58015 · doi:10.1109/TCS.1986.1085869 [49] C. P. Silva, “Shil’nikov’s theorem-a tutorial,” IEEE Transactions on Circuits and Systems I, vol. 40, pp. 675-682, 1993. · Zbl 0850.93352 · doi:10.1109/81.246142 [50] D. Cafagna and G. Grassi, “New 3D-scroll attractors in hyperchaotic Chua’s circuits forming a ring,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 13, no. 10, pp. 2889-2903, 2003. · Zbl 1057.37026 · doi:10.1142/S0218127403008284 [51] J. Lü, G. Chen, X. Yu, and H. Leung, “Design and analysis of multiscroll chaotic attractors from saturated function series,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 12, pp. 2476-2490, 2004. · Zbl 1371.37060 · doi:10.1109/TCSI.2004.838151 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.