zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical solutions of a class of inverse coefficient problems. (English) Zbl 1251.35190
Summary: This paper is devoted to some class of inverse coefficient problems. By using a well-known transformation, the inverse problem is transformed to a new problem without the unknown time dependent coefficient. Therefore, the new inverse problem can be solved easily. To show the efficiency of the present method, some examples are presented.
MSC:
35R30Inverse problems for PDE
35A22Transform methods (PDE)
35K10Second order parabolic equations, general
35Q93PDEs in connection with control and optimization
WorldCat.org
Full Text: DOI
References:
[1] Cannon, J. R.; Lin, Y.; Wang, S.: Determination of parameter $p(t)$ in some quasi-linear parabolic differential equations, Inverse problems, 35-45 (1998) · Zbl 0697.35162 · doi:10.1088/0266-5611/4/1/006
[2] Canon, J. R.; Tatari, M.: Identifying an unknown function in a parabolic equation with overspecifed data via he’s variational iteration method, Chaos solitons fractals, 157-166 (2008) · Zbl 1152.35390 · doi:10.1016/j.chaos.2006.06.023
[3] Dehghan, M.; Tatari, M.: He’s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation, Chaos solitons fractals, 671-677 (2007) · Zbl 1131.65084 · doi:10.1016/j.chaos.2006.01.059
[4] Liu, J. B.; Tang, J.: Variational iteration method for solving an inverse parabolic equation, Phys. lett. A 372, 3569-3572 (2008) · Zbl 1220.35004 · doi:10.1016/j.physleta.2008.02.042
[5] Ou, Y. H.; Zhao, J.; Liu, Z. H.; Tang, J.: Determination of the unknown time dependent coefficient $p(t)$ in the parabolic equation ut=?$u+p(t)u+\phi $(x,t), J. inverse ill-posed probl. 19, 525-531 (2011) · Zbl 1279.35061
[6] He, J. H.: Variational iteration method--a kind of non-linear analytical technique: some examples, Internat. J. Non-linear mech. 34, 699-708 (1999) · Zbl 05137891
[7] He, J. H.: Variational iteration method-some recent results and new interpretations, J. comput. Appl. math. 207, 3-17 (2007) · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[8] He, J. H.; Wu, X. H.: Variational iteration method: new development and applications, J. comput. Appl. math. 54, 881-894 (2007) · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083
[9] Odibat, Zaid M.: A study on the convergence of variational iteration method, Math. comput. Modelling 51, 1181-1192 (2010) · Zbl 1198.65147 · doi:10.1016/j.mcm.2009.12.034
[10] Macbain, J. A.; Bednar, J. B.: Existence and uniqueness properties for one-dimensional magnetotelluric inversion problem, J. math. Phys. 27, 645-649 (1986)
[11] Prilepko, A. I.; Soloev, V. V.: Solvability of the inverse boundary value problem of finding a coefficient of a lower order term in a parabolic equation, J. differential equations 32, 136-143 (1987)
[12] Hasanov, A.; Liu, Z.: An inverse coefficient problem for a nonlinear parabolic variational inequality, Appl. math. Lett., 563-570 (2008) · Zbl 1143.35385 · doi:10.1016/j.aml.2007.06.007