Terng, Chuu-Lian; Uhlenbeck, Karen The \(n \times n\) KdV hierarchy. (English) Zbl 1251.37070 J. Fixed Point Theory Appl. 10, No. 1, 37-61 (2011). The authors construct two new soliton hierarchies that are generalisations of the KdV hierarchy, which they call the \(n \times n\) KdV hierarchy and the \(2n \times 2n\) KdV-II hierarchy. These hierarchies are new restrictions of the AKNS \(n \times n\) hierarchy obtained from two unusual splittings of the loop algebra. The splittings arise from automorphisms of the loop algebra rather than from automorphisms of \(\mathrm{sl}(n,\mathbb{C})\). Since the construction is based on a Lie algebra splitting, the general method gives formal inverse scattering, bi-Hamiltonian structures, commuting flows, and Bäcklund transformations for these new systems.The method how to generate a hierarchy of commuting flows from a Lie algebra splitting is reviewed and basic examples of the theory are presented, which include the AKNS hierarchy, the matrix NLS hierarchy, the Kuperschmidt-Wilson hierarchy, and the \(n \times n\) mKdV hierarchy. Reviewer: Johanna Michor (Wien) Cited in 11 Documents MSC: 37K30 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with infinite-dimensional Lie algebras and other algebraic structures 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) 35Q53 KdV equations (Korteweg-de Vries equations) Keywords:soliton hierarchy; Lie algebra splitting; KdV-type equations × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H.: The inverse scattering transform–Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974) · Zbl 0408.35068 [2] Beals R., Coifman R.R.: Scattering and inverse scattering for first order systems. Comm. Pure Appl. Math. 37, 39–90 (1984) · doi:10.1002/cpa.3160370105 [3] R. Beals, P. Deift and C. Tomei, Direct and Inverse Scattering on the Line. Math. Surveys Monogr. 28, American Mathematical Society, Providence, RI, 1988. · Zbl 0679.34018 [4] V. G. Drinfel’d and V. V. Sokolov, Lie algebras and equations of Kortewegde Vries type. In: Current Problems in Mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, 81–180 (in Russian). [5] Fordy A.P., Kulish P.P.: Nonlinear Schrödinger equations and simple Lie algebra. Comm. Math. Phys. 89, 427–443 (1983) · Zbl 0563.35062 · doi:10.1007/BF01214664 [6] Kupershmidt B.A., Wilson G.: Modifying Lax equations and the second Hamiltonian structure. Invent. Math. 62, 403–436 (1981) · Zbl 0464.35024 · doi:10.1007/BF01394252 [7] Palais R.S.: Morse theory on Hilbert manifolds. Topology 2, 299–340 (1963) · Zbl 0122.10702 · doi:10.1016/0040-9383(63)90013-2 [8] A. Pressley and G. B. Segal, Loop Groups. Oxford Science Publ., Clarendon Press, Oxford, 1986. [9] C.-L. Terng and K. Uhlenbeck, Poisson actions and scattering theory for integrable systems. In: Surveys in Differential Geometry: Integrable Systems, Surv. Differ. Geom. IV, Int. Press, Boston, MA, 1998, 315–402. · Zbl 0935.35163 [10] Terng C.-L.: Uhlenbeck K., Bäcklund transformations and loop group actions. Comm. Pure. Appl. Math. 53, 1–75 (2000) · Zbl 1031.37064 · doi:10.1002/(SICI)1097-0312(200001)53:1<1::AID-CPA1>3.0.CO;2-U [11] C.-L. Terng and K. Uhlenbeck, Tau-functions for integrable systems. In preparation. [12] C.-L. Terng and K. Uhlenbeck, Virasoro action for integrable systems. In preparation. [13] G. Wilson, The {\(\tau\)}-functions of the $${\(\backslash\)mathcal{G}}$$ AKNS equations. In: Integrable Systems (Luminy, 1991), Progr. Math. 115, Birkhäuser Boston, Boston, 1993, 147–162. [14] Zakharov V.E., Shabat A.B.: Exact theory of two-dimensional self-focusing and one-dimensional of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972) [15] Zakharov V.E., Manakov S.V.: The theory of resonant interaction of wave packets in non-linear media. Sov. Phys. JETP 42, 842–850 (1974) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.