Efficient Monte Carlo for high excursions of Gaussian random fields. (English) Zbl 1251.60031

The authors of this paper deal with Monte Carlo methods and continuous Gaussian random fields of the form \(f: T\times \Omega\rightarrow \mathbb{R}\) over a \(d\)-dimensional compact set \(T\subset \mathbb{R}^d\). To be more precise, the paper deals with the design and analysis of Monte Carlo methods for computing tail probabilities of the form \[ w(b)=\text{P}(\max_{t\in T} f(t)>b), \] and conditional expectations \[ \text{E}(\Gamma(f)|\max_{t\in T} f(t)>b), \] as \(b\rightarrow \infty\), where \(\Gamma\) is a positive and bounded functional of the field. Estimating these probabilities and conditional expectations accurately (in relative terms) by the use of an approach using naive Monte Carlo would require a computational cost that is exponential in \(b\). However, in this paper, the authors introduce simulation estimators that work for a general class of Gaussian fields (assuming that the mean and covariance functions are Hölder continuous) and require at most a polynomial number of function evalutations in \(b\). Under the assumption of additional smoothness, this result can be further improved to estimators that are strongly efficient, by which is meant that their associated coefficient of variation is uniformly bounded as \(b\) tends to infinity.


60G15 Gaussian processes
65C05 Monte Carlo methods
60G60 Random fields
62G32 Statistics of extreme values; tail inference
Full Text: DOI arXiv Euclid


[1] Adler, R. J. (1981). The Geometry of Random Fields . Wiley, Chichester. · Zbl 0478.60059
[2] Adler, R. J., Bartz, K. and Kou, S. (2010). Estimating curvatures in the Gaussian kinematic formula. Unpublished manuscript, Harvard Univ.
[3] Adler, R. J., Blanchet, J. and Liu, J. (2008). Efficient simulation for tail probabilities of Gaussian random fields. In WSC’ 08: Proceedings of the 40 th Conference on Winter Simulation 328-336. Winter Simulation Conference, Austin, TX.
[4] Adler, R. J., Müller, P. and Rozovskiĭ, B., eds. (1996). Stochastic Modelling in Physical Oceanography. Progress in Probability 39 . Birkhäuser, Boston, MA. · Zbl 0836.00049
[5] Adler, R. J. and Taylor, J. E. (2007). Random Fields and Geometry . Springer, New York. · Zbl 1149.60003 · doi:10.1007/978-0-387-48116-6
[6] Adler, R. J., Taylor, J. E. and Worsley, K. (2011). Applications of random fields and geometry: Foundations and case studies. Available at .
[7] Asmussen, S. and Glynn, P. W. (2007). Stochastic Simulation : Algorithms and Analysis. Stochastic Modelling and Applied Probability 57 . Springer, New York. · Zbl 1126.65001
[8] Azaïs, J.-M. and Wschebor, M. (2009). Level Sets and Extrema of Random Processes and Fields . Wiley, Hoboken, NJ. · Zbl 1168.60002
[9] Bardeen, J. M., Bond, J. R., Kaiser, N. and Szalay, A. S. (1986). The statistics of peaks of Gaussian random fields. The Astrophysical Journal 304 15-61.
[10] Berman, S. M. (1992). Sojourns and Extremes of Stochastic Processes . Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA. · Zbl 0809.60046
[11] Blanchet, J. H. (2009). Efficient importance sampling for binary contingency tables. Ann. Appl. Probab. 19 949-982. · Zbl 1180.65010 · doi:10.1214/08-AAP558
[12] Borell, C. (1975). The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 207-216. · Zbl 0292.60004 · doi:10.1007/BF01425510
[13] Bucklew, J. A. (2004). Introduction to Rare Event Simulation . Springer, New York. · Zbl 1057.65002
[14] Cirel’son, B. S., Ibragimov, I. A. and Sudakov, V. N. (1976). Norms of Gaussian sample functions. In Proceedings of the Third Japan-USSR Symposium on Probability Theory ( Tashkent , 1975). Lecture Notes in Math. 550 20-41. Springer, Berlin. · Zbl 0359.60019
[15] Dennis, M. R. (2007). Nodal densities of planar Gaussian random waves. Eur. Phys. J. 145 191-210.
[16] Dudley, R. M. (1973). Sample functions of the Gaussian process. Ann. Probab. 1 66-103. · Zbl 0261.60033 · doi:10.1214/aop/1176997026
[17] Friston, K. J., Worsley, K. J., Frackowiak, R. S. J., Mazziotta, J. C. and Evans, A. C. (1994). Assessing the significance of focal activations using their spatial extent. Human Brain Mapping 1 214-220.
[18] Kallenberg, O. (1986). Random Measures , 4th ed. Akademie Verlag, Berlin. · Zbl 0345.60032
[19] Kallenberg, O. (2002). Foundations of Modern Probability , 2nd ed. Springer, New York. · Zbl 0996.60001
[20] Landau, H. J. and Shepp, L. A. (1970). On the supremum of a Gaussian process. Sankhyā Ser. A 32 369-378. · Zbl 0218.60039
[21] Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes . Springer, New York. · Zbl 0518.60021
[22] Mitzenmacher, M. and Upfal, E. (2005). Probability and Computing : Randomized Algorithms and Probabilistic Analysis . Cambridge Univ. Press, Cambridge. · Zbl 1092.60001 · doi:10.1017/CBO9780511813603
[23] Niemiro, W. and Pokarowski, P. (2009). Fixed precision MCMC estimation by median of products of averages. J. Appl. Probab. 46 309-329. · Zbl 1170.60327 · doi:10.1239/jap/1245676089
[24] Piterbarg, V. (1995). Asymptotic Methods in the Theory of Gaussian Processes . Amer. Math. Soc., Providence, RI. · Zbl 1020.37586
[25] Shandarin, S. F. (2002). Testing non-Gaussianity in cosmic microwave background maps by morphological statistics. Mon. Not. R. Astr. Soc. 331 865-874.
[26] Shandarin, S. F., Feldman, H. A., Xu, Y. and Tegmark, M. (2002). Morphological measures of non-Gaussianity in cosmic microwave background maps. Astrophys. J. Suppl. 141 1-11.
[27] Taylor, J., Takemura, A. and Adler, R. J. (2005). Validity of the expected Euler characteristic heuristic. Ann. Probab. 33 1362-1396. · Zbl 1083.60031 · doi:10.1214/009117905000000099
[28] Taylor, J. E. and Worsley, K. J. (2007). Detecting sparse signals in random fields, with an application to brain mapping. J. Amer. Statist. Assoc. 102 913-928. · Zbl 1469.62353 · doi:10.1198/016214507000000815
[29] Traub, J. F., Wasilkowski, G. W. and Woźniakowski, H. (1988). Information-Based Complexity . Academic Press, Boston, MA. · Zbl 0654.94004
[30] Tsirel’son, V. S. (1975). The density of the maximum of a Gaussian process. Theory Probab. Appl. 20 847-856. · Zbl 0348.60050
[31] Woźniakowski, H. (1996). Computational complexity of continuous problems. Technical report, Columbia Univ. · Zbl 0925.65042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.