zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A modified Newton-Jarratt’s composition. (English) Zbl 1251.65074
Summary: A reduced composition technique is used on Newton and Jarratt’s methods in order to obtain an optimal relation between convergence order, functional evaluations and number of operations. Following this aim, a family of methods is obtained whose efficiency indices are proved to be better for systems of nonlinear equations.

65H10Systems of nonlinear equations (numerical methods)
65H05Single nonlinear equations (numerical methods)
Full Text: DOI
[1] Cordero, A., Torregrosa, J.R.: Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686--698 (2007) · Zbl 1122.65350 · doi:10.1016/j.amc.2007.01.062
[2] Cordero, A., Torregrosa, J.R.: On interpolation variants of Newton’s method. In: Proceedings of the 2th International Conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources. Universidad de Granada (Spain), 11--13 July 2007, ISBN: 978-84-338-4782-9.
[3] Frontini, M., Sormani, E.: Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl. Math. Comput. 149, 771--782 (2004) · Zbl 1050.65055 · doi:10.1016/S0096-3003(03)00178-4
[4] Jarrat, P.: Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434--437 (1966) · Zbl 0229.65049 · doi:10.1090/S0025-5718-66-99924-8
[5] Gerlach, J.: Accelerated convergence in Newton’s method. SIAM Rev. 36(2), 272--276 (1994) · Zbl 0814.65046 · doi:10.1137/1036057
[6] Nedzhibov, G.H.: A family of multi-point iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.10.054 (2008) · Zbl 1154.65037
[7] Ozban, A.Y.: Some new variants of Newton’s method. Appl. Math. Lett. 17, 677--682 (2004) · Zbl 1065.65067 · doi:10.1016/S0893-9659(04)90104-8
[8] Ostrowski, A.M.: Solutions of Equations and Systems of Equations. Academic, New York (1966) · Zbl 0222.65070
[9] Romero Alvarez, N., Ezquerro, J.A., Hernandez, M.A.: Aproximación de soluciones de algunas equacuaciones integrales de Hammerstein mediante métodos iterativos tipo Newton. XXI Congreso de ecuaciones diferenciales y aplicaciones, Universidad de Castilla-La Mancha (2009)
[10] Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea, New York (1982) · Zbl 0472.65040
[11] Wang, X., Kou, J., Li, Y.: Modified Jarratt method with sixth-order convergence. Appl. Math. Lett. 22, 1798--1802 (2009) · Zbl 1184.65054 · doi:10.1016/j.aml.2009.06.022
[12] Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13(8), 87--93 (2000) · Zbl 0973.65037 · doi:10.1016/S0893-9659(00)00100-2