×

Synchronized Hopf bifurcation analysis in a delay-coupled semiconductor lasers system. (English) Zbl 1251.78012

Summary: The dynamics of a system of two semiconductor lasers, which are delay coupled via a passive relay within the synchronization manifold, are investigated. Depending on the coupling parameters, the system exhibits synchronized Hopf bifurcation and the stability switches as the delay varies. Employing the center manifold theorem and normal form method, an algorithm is derived for determining the Hopf bifurcation properties. Some numerical simulations are carried out to illustrate the analysis results.

MSC:

78A60 Lasers, masers, optical bistability, nonlinear optics
82D37 Statistical mechanics of semiconductors
37N35 Dynamical systems in control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. Möhrle, B. Sartorius, C. Bornholdt et al., “Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 7, no. 2, pp. 217-223, 2001. · doi:10.1109/2944.954133
[2] M. T. Hill, H. De Waardt, G. D. Khoe, and H. J. S. Dorren, “All-optical flip-flop based on coupled laser diodes,” IEEE Journal of Quantum Electronics, vol. 37, no. 3, pp. 405-413, 2001. · doi:10.1109/3.910450
[3] E. F. Manffra, I. L. Caldas, R. L. Viana, and H. J. Kalinowski, “Type-I intermittency and crisis-induced intermittency in a semiconductor laser under injection current modulation,” Nonlinear Dynamics, vol. 27, no. 2, pp. 185-195, 2002. · Zbl 0995.78503 · doi:10.1023/A:1014212930111
[4] H. Erzgräber, B. Krauskopf, and D. Lenstra, “Compound laser modes of mutually delay-coupled lasers,” SIAM Journal on Applied Dynamical Systems, vol. 5, no. 1, pp. 30-65, 2006. · Zbl 1097.78014 · doi:10.1137/040619958
[5] H. Erzgräber, D. Lenstra, B. Krauskopf et al., “Mutually delay-coupled semiconductor lasers: mode bifurcation scenarios,” Optics Communications, vol. 255, no. 4-6, pp. 286-296, 2005. · Zbl 1097.78014 · doi:10.1016/j.optcom.2005.06.016
[6] G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Functions, vol. 210, Longman Scientific & Technical, London, UK, 1989. · Zbl 0686.34044
[7] T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical feedback: the short cavity regime,” Physical Review Letters, vol. 87, no. 24, Article ID 243901, 2001.
[8] T. Heil, I. Fischer, W. Elsäßer, J. Mulet, and C. R. Mirasso, “Chaos synchronization and spontaneous symmetry-breaking in symmetrically delay-coupled semiconductor lasers,” Physical Review Letters, vol. 86, no. 5, pp. 795-798, 2001. · doi:10.1103/PhysRevLett.86.795
[9] J. Wei and C. Yu, “Stability and bifurcation analysis in the cross-coupled laser model with delay,” Nonlinear Dynamics, vol. 66, no. 1, pp. 29-38, 2011. · Zbl 1293.78010 · doi:10.1007/s11071-010-9908-y
[10] D. V. Ramana Reddy, A. Sen, and G. L. Johnston, “Time delay induced death in coupled limit cycle oscillators,” Physical Review Letters, vol. 80, no. 23, pp. 5109-5112, 1998.
[11] I. Fischer, Y. Liu, and P. Davis, “Synchronization of chaotic semiconductor laser dynamics on subnanosecond time scales and its potential for chaos communication,” Physical Review A, vol. 62, no. 1, Article ID 011801, 2000.
[12] B. Ravoori, A. B. Cohen, A. V. Setty et al., “Adaptive synchronization of coupled chaotic oscillators,” Physical Review E, vol. 80, no. 5, Article ID 056205, 2009. · doi:10.1103/PhysRevE.80.056205
[13] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in complex networks,” Physics Reports, vol. 469, no. 3, pp. 93-153, 2008. · doi:10.1016/j.physrep.2008.09.002
[14] M. Nixon, M. Friedman, E. Ronen, A. A. Friesem, N. Davidson, and I. Kanter, “Synchronized cluster formation in coupled laser networks,” Physical Review Letters, vol. 106, no. 22, Article ID 223901, 2011. · doi:10.1103/PhysRevLett.106.223901
[15] X. Liu, Q. Gao, and L. Niu, “A revisit to synchronization of Lurie systems with time-delay feedback control,” Nonlinear Dynamics, vol. 59, no. 1-2, pp. 297-307, 2010. · Zbl 1183.70074 · doi:10.1007/s11071-009-9539-3
[16] C. F. Feng, “Projective synchronization between two different time-delayed chaotic systems using active control approach,” Nonlinear Dynamics, vol. 62, pp. 453-459, 2010. · Zbl 1211.93064 · doi:10.1007/s11071-010-9733-3
[17] H. Huang, G. Feng, and J. Cao, “Exponential synchronization of chaotic Lur’e systems with delayed feedback control,” Nonlinear Dynamics, vol. 57, no. 3, pp. 441-453, 2009. · Zbl 1176.70034 · doi:10.1007/s11071-008-9454-z
[18] J. Lu and J. Cao, “Adaptive synchronization of uncertain dynamical networks with delayed coupling,” Nonlinear Dynamics, vol. 53, no. 1-2, pp. 107-115, 2008. · Zbl 1182.92007 · doi:10.1007/s11071-007-9299-x
[19] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE Journal of Quantum Electronics, vol. 16, no. 3, pp. 347-355, 1980.
[20] P. M. Alsing, V. Kovanis, A. Gavrielides, and T. Erneux, “Lang and Kobayashi phase equation,” Physical Review A, vol. 53, no. 6, pp. 4429-4434, 1996.
[21] J. D. Farmer, “Chaotic attractors of an infinite-dimensional dynamical system,” Physica D, vol. 4, no. 3, pp. 366-393, 1982. · Zbl 1194.37052 · doi:10.1016/0167-2789(82)90042-2
[22] V. Flunkert, O. D’Huys, J. Danckaert, I. Fischer, and E. Schöll, “Bubbling in delay-coupled lasers,” Physical Review E, vol. 79, no. 6, Article ID 065201, 2009. · doi:10.1103/PhysRevE.79.065201
[23] S. Ruan and J. Wei, “On the zeros of transcendental functions with applications to stability of delay differential equations with two delays,” Dynamics of Continuous, Discrete & Impulsive Systems Series A, vol. 10, no. 6, pp. 863-874, 2003. · Zbl 1068.34072
[24] B. D. Hassard, N. D. Kazarinoff, and Y. H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41, Cambridge University Press, Cambridge, UK, 1981. · Zbl 0474.34002
[25] J. Hale, Theory of Functional Differential Equations, Springer, New York, NY, USA, 1977. · Zbl 0352.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.