Ahmad, Tahir; Ramachandran, Vinod Hyperspherical manifold for EEG signals of epileptic seizures. (English) Zbl 1251.92025 J. Appl. Math. 2012, Article ID 926358, 22 p. (2012). Summary: The mathematical modelling of EEG signals of epileptic seizures presents a challenge as seizure data is erratic, often with no visible trend. Limitations in existing models indicate a need for a generalized model that can be used to analyze seizures without the need for a priori information, whilst minimizing the loss of signal data due to smoothing. This paper utilizes measure theory to design a discrete probability measure that reformats EEG data without altering its geometric structure. An analysis of EEG data from three patients experiencing epileptic seizures is made using the developed measure, resulting in successful identification of increased potential difference in portions of the brain that correspond to physical symptoms demonstrated by the patients. A mapping is then devised to transport the measure data onto the surface of a high-dimensional manifold, enabling the analysis of seizures using directional statistics and manifold theory. The subset of seizure signals on the manifold is shown to be a topological space, verifying Ahmad’s approach to use topological modelling. Cited in 1 Document MSC: 92C55 Biomedical imaging and signal processing 92C50 Medical applications (general) 60A10 Probabilistic measure theory 60B99 Probability theory on algebraic and topological structures PDFBibTeX XMLCite \textit{T. Ahmad} and \textit{V. Ramachandran}, J. Appl. Math. 2012, Article ID 926358, 22 p. (2012; Zbl 1251.92025) Full Text: DOI OA License References: [1] WHO, Epilepsy factsheet, 2009. [2] H. Gastaut, “Clinical and electroencephalographical classification of epileptic seizures,” Epilepsia, vol. 11, no. 1, pp. 102-112, 1970. · doi:10.1111/j.1528-1157.1970.tb03871.x [3] T. Ahmad, R. A. Fairuz, F. Zakaria, and H. Isa, “Selection of a subset of EEG channels of epileptic patient during seizure using PCA,” in Proceedings of the 7th WSEAS International Conference on Signal Processing, Robotics and Automation, pp. 270-273, World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wis, USA, 2008. [4] F. Zakaria, Dynamic profiling Of EEG data during seizure using fuzzy information space [Ph.D. thesis], Universiti Teknologi Malaysia, 2008. [5] E. Niedermeyer and F. H. L. Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, M-Medicine Series, Lippincott Williams & Wilkins, 2005. [6] A. Babloyantz and A. Destexhe, “Low-dimensional chaos in an instance of epilepsy,” Proceedings of the National Academy of Sciences, vol. 83, no. 10, pp. 3513-3517, 1986. [7] C. J. Stam, “Nonlinear dynamical analysis of EEG and MEG: review of an emerging field,” Clinical Neurophysiology, vol. 116, no. 10, pp. 2266-2301, 2005. [8] L. D. Iasemidis, S. J. Chris, H. P. Zaveri, and W. J. Williams, “Phase space topography and the lyapunov exponent of electrocorticograms in partial seizures,” Brain Topography, vol. 2, no. 3, pp. 187-201, 1990. · doi:10.1007/BF01140588 [9] G. W. Frank, T. Lookman, M. A. H. Nerenberg, C. Essex, J. Lemieux, and W. Blume, “Chaotic time series analyses of epileptic seizures,” Physica D, vol. 46, no. 3, pp. 427-438, 1990. · Zbl 0713.92010 · doi:10.1016/0167-2789(90)90103-V [10] J. Theiler, “On the evidence for low-dimensional chaos in an epileptic electroencephalogram,” Physics Letters A, vol. 196, no. 5-6, pp. 335-341, 1995. [11] N. Schiff, J. Victor, A. Canel, and D. Labar, “Characteristic nonlinearities of the 3/s ictal electroencephalogram identified by nonlinear autoregressive analysis,” Biological Cybernetics, vol. 72, no. 6, pp. 519-526, 1995. · Zbl 0826.92021 · doi:10.1007/BF00199894 [12] R. Friedrich and C. Uhl, “Spatio-temporal analysis of human electroen-cephalograms: petit-mal epilepsy,” Physica D, vol. 98, no. 1, pp. 171-182, 1996. · Zbl 0887.92019 · doi:10.1016/0167-2789(96)00059-0 [13] J. L. Hernndez, P. A. Valds, and P. Vila, “EEG spike and wave modelled by a stochastic limit cycle,” NeuroReport, vol. 7, no. 13, pp. 2246-2250, 1996. [14] M. Le van Quyen, J. Martinerie, C. Adam, and F. J. Varela, “Unstable periodic orbits in human epileptic activity,” Physical Review E, vol. 56, no. 3, pp. 3401-3411, 1997. · doi:10.1103/PhysRevE.56.3401 [15] M. Feucht, U. Mller, H. Witte, et al., “Nonlinear dynamics of 3 hz spike- and-wave discharges recorded during typical absence seizures in children,” Cerebral Cortex, vol. 8, no. 6, pp. 524-533, 1998. [16] T. E. Peters, N. C. Bhavaraju, M. G. Frei, and I. Osorio, “Network system for automated seizure detection and contingent delivery of therapy,” Journal of Clinical Neurophysiology, vol. 18, no. 6, pp. 545-549, 2001. [17] C. E. Elger and K. Lehnertz, “Seizure prediction by non-linear time series analysis of brain electrical activity,” European Journal of Neuroscience, vol. 10, no. 2, pp. 786-789, 1998. [18] J. Martinerie, C. Adam, M. Le van Quyen, et al., “Epileptic seizures can be anticipated by non-linear analysis,” Nature Medicine, vol. 4, pp. 1173-1176, 1998. · doi:10.1038/266 [19] H. R. Moser, B. Weber, H. G. Wieser, and P. F. Meier, “Electroencephalograms in epilepsy: analysis and seizure prediction within the framework of lyapunov theory,” Physica D, vol. 130, no. 3-4, pp. 291-305, 1999. · Zbl 0951.92015 · doi:10.1016/S0167-2789(99)00043-3 [20] Y. C. Lai, M. A. F. Harrison, M. G. Frei, and I. Osorio, “Inability of lyapunov exponents to predict epileptic seizures,” Physical Review Letters, vol. 91, no. 6, Article ID 068102, 4 pages, 2003. · Zbl 1080.92043 · doi:10.1103/PhysRevLett.91.068102 [21] I. Osorio, M. A. Harrison, Y. C. Lai, and M. G. Frei, “Observations on the application of the correlation dimension and correlation integral to the prediction of seizures,” Journal of Clinical Neurophysiology, vol. 18, no. 3, pp. 269-274, 2001. [22] M. A. F. Harrison, I. Osorio, M. G. Frei, S. Asuri, and Y. C. Lai, “Correlation dimension and integral do not predict epileptic seizures,” Chaos, vol. 15, no. 3, Article ID 33106, 2005. · Zbl 1144.37353 · doi:10.1063/1.1935138 [23] S. Kalitzin, J. Parra, D. N. Velis, and F. H. Lopes da Silva, “Enhancement of phase clustering in the EEG/MEG gamma frequency band anticipates transitions to paroxysmal epileptiform activity in epileptic patients with known visual sensitivity,” IEEE Transactions on Biomedical Engineering, vol. 49, no. 11, pp. 1279-1286, 2002. [24] W. van Drongelen, S. Nayak, D. M. Frim, et al., “Seizure anticipation in pediatric epilepsy: use of kolmogorov entropy,” Pediatric Neurology, vol. 29, no. 3, pp. 207-213, 2003. [25] F. Mormann, R. G. Andrzejak, C. E. Elger, and K. Lehnertz, “Seizure prediction: the long and winding road,” Brain, vol. 130, no. 2, pp. 314-333, 2007. [26] P. McSharry, T. He, L. Smith, and L. Tarassenko, “Linear and non-linear methods for automatic seizure detection in scalp electro-encephalogram recordings,” Medical and Biological Engineering and Computing, vol. 40, no. 4, pp. 447-461, 2002. · doi:10.1007/BF02345078 [27] D. Kugiumtzis and P. G. Larsson, “Prediction of epileptic seizures with linear and nonlinear analysis of EEG,” in Chaos in Brain?: Proceedings of the Workshop, K. Lehnertz and C. E. Elger, Eds., pp. 329-332, World Scientific, 1999. [28] K. K. Jerger, T. I. Netoff, J. T. Francis, et al., “Early seizure detection,” Journal of Clinical Neurophysiology, vol. 18, pp. 259-268, 2001. [29] S. Baillet and L. Garnero, “A bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem,” IEEE Transactions on Biomedical Engineering, vol. 44, no. 5, pp. 374-385, 1997. [30] J. R. Stevens, “Electroencephalographic studies of conditional cerebral response in epileptic subjects,” Electroencephalography and Clinical Neurophysiology, vol. 12, no. 2, pp. 431-444, 1960. [31] O. Faust, R. U. Acharya, A. R. Allen, and C. M. Lin, “Analysis of eeg signals during epileptic and alcoholic states using ar modeling techniques,” Ingénierie et Recherche Biomédicale, vol. 29, no. 1, pp. 44-52, 2008. [32] N. Sivasankari and K. Thanushkodi, “Automated epileptic seizure detection in EEG signals using fast ICA and neural networks,” International Journal of Soft Computing Applications, vol. 1, no. 2, 2009. [33] T. Ahmad, R. S. Ahmad, F. Zakaria, and L. L. Yun, “Development of detection model for neuromagnetic fields,” in Proceedings of the BIOMED 2000, pp. 119-121, University of Malaya, September 2000. [34] T. Ahmad, R. S. Ahmad, W. E. Z. W. Abdul Rahman, L. L. Yun, and F. Zakaria, “Fuzzy topographic topological mapping for localisation simulated multiple current sources of MEG,” Journal of Interdisciplinary Mathematics, vol. 11, pp. 381-393, 2008. · Zbl 1213.94008 · doi:10.1080/09720502.2008.10700565 [35] A. Idris, T. Ahmad, and N. Maan, “A novel technique for visualization electrical activities in the brain during epileptic seizure,” in Proceedings of the International Conference on Applied Mathematics and Informatics, pp. 94-99, 2010. [36] J. M. Franks, Terse Introduction to Lebesgue Integration, Student mathematical library, American Mathematical Society, Providence, RI, USA, 2009. · Zbl 1177.28001 [37] S. K. Berberian, Measure and Integration, AMS Chelsea Publishing, Providence, RI, USA, 2011. · Zbl 0126.08001 [38] G. G. Roussas, An Introduction to Measure-Theoretic Probability, Elsevier/Academic Press, Amsterdam, The Netherlands, 2005. · Zbl 1071.60001 [39] W. J. Ewens and G. R. Grant, Statistical Methods in Bioinformatics: An Introduction, vol. 10 of Statistics for Biology and Health, Springer, New York, NY, USA, 2005. · Zbl 1138.92001 · doi:10.1007/b137845 [40] M. J. Hassett and D. Stewart, Probability for Risk Management, ACTEX academic series, ACTEX Publications, 2006. [41] R. R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing, Statistical Modeling and Decision Science, Elsevier Science & Technology, 1997. · Zbl 0991.62508 [42] A. Banerjee, I. S. Dhillon, J. Ghosh, and S. Sra, “Clustering on the unit hypersphere using von Mises-Fisher distributions,” Journal of Machine Learning Research, vol. 6, pp. 1345-1382, 2005. · Zbl 1190.62116 [43] E. Zakon, B. Lucier, and T. Zakon, Mathematical Analysis, The Zakon Series on Mathematical Analysis, The Trillia Group, 2004. [44] A. Dold, Lectures on Algebraic Topology, Classics in Mathematics, Springer, Berlin, Germany, 1995. · Zbl 0872.55001 [45] S. I. Amari, H. Nagaoka, and D. Harada, Methods of Information Geometry, Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, USA, 2007. [46] J. M. Lee, Introduction to Topological Manifolds, vol. 202 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 2011. · Zbl 1209.57001 · doi:10.1007/978-1-4419-7940-7 [47] S. Lipschutz, Schaum’s Outline of General Topology, McGraw-Hill, 1988, Séerie Schaum. [48] Y. Eidelman, V. D. Milman, and A. Tsolomitis, Functional Analysis: An Introduction, Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, USA, 2004. · Zbl 1077.46001 [49] J. Malmivuo and R. Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, 1995. [50] J. W. B. Douglas, “A neuropsychiatric study in childhood by Michael Rutter, Philip Graham and William Yule, clinics in developmental medicine, volume 35/36. (pp. 272; illustrated; 375.) heinemann medical books: London. 1970,” Psychological Medicine, vol. 1, no. 5, pp. 437-439, 1971. [51] S. McDermott, S. Mani, and S. Krishnawami, “A population-based analysis of specific behavior problems associated with childhood seizures,” Journal of Epilepsy, vol. 8, no. 2, pp. 110-118, 1995. [52] L. M. Surhone, M. T. Tennoe, and S. F. Henssonow, Premotor Cortex, VDM Verlag Dr. Mueller AG & Co. Kg, 2010. [53] C. Bahlmann, “Directional features in online handwriting recognition,” Pattern Recognition, vol. 39, pp. 115-125, 2006. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.