Ervedoza, Sylvain; Zuazua, Enrique Sharp observability estimates for heat equations. (English) Zbl 1251.93040 Arch. Ration. Mech. Anal. 202, No. 3, 975-1017 (2011). Summary: The goal of this article is to derive new estimates for the cost of observability of heat equations. We have developed a new method allowing one to show that when the corresponding wave equation is observable, the heat equation is also observable. This method allows one to describe the explicit dependence of the observability constant on the geometry of the problem (the domain in which the heat process evolves and the observation subdomain). We show that our estimate is sharp in some cases, particularly in one space dimension and in the multi-dimensional radially symmetric case. Our result extends those in H. O. Fattorini and D. L. Russell [”Exact controllability theorems for linear parabolic equations in one space dimension”, Arch. Ration. Mech. Anal. 43, 272-292 (1971; Zbl 0231.93003)] to the multi-dimensional setting and improves those available in the literature, namely those by L. Miller [”Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time”, J. Differ. Equations 204, No. 1, 202-226 (2004; Zbl 1053.93010)], L. Miller [”The control transmutation method and the cost of fast controls”, SIAM J. Control Optim. 45, No. 2, 762-772 (2006; Zbl 1109.93009)], L. Miller [”On exponential observability estimates for the heat semigroup with explicit rates”, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 17, No. 4, 351-366 (2006; Zbl 1150.93006)] and G. Tenenbaum, M. Tucsnak [”New blow-up rates for fast controls of Schrödinger and heat equations”, J. Differ. Equations 243, No. 1, 70-100 (2007; Zbl 1127.93016)]. Our approach is based on an explicit representation formula of some solutions of the wave equation in terms of those of the heat equation, in contrast to the standard application of transmutation methods, which uses a reverse representation of the heat solution in terms of the wave one. We shall also explain how our approach applies and yields some new estimates on the cost of observability in the particular case of the unit square observed from one side. We will also comment on the applications of our techniques to controllability properties of heat-type equations. Cited in 44 Documents MSC: 93B07 Observability 35K20 Initial-boundary value problems for second-order parabolic equations Citations:Zbl 0231.93003; Zbl 1053.93010; Zbl 1109.93009; Zbl 1150.93006; Zbl 1127.93016 × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] Alessandrini G., Escauriaza L.: Null-controllability of one-dimensional parabolic equations. ESAIM Control Optim. Calc. Var. 14(2), 284–293 (2008) · Zbl 1145.35337 · doi:10.1051/cocv:2007055 [2] Allibert B.: Contrôle analytique de l’équation des ondes sur des surfaces de révolution. C. R. Acad. Sci. Paris Sér. I Math. 322(9), 835–838 (1996) · Zbl 0852.35021 [3] Allibert B.: Analytic controllability of the wave equation over a cylinder. ESAIM Control Optim. Calc. Var. 4, 177–207 (1999) · Zbl 0945.93009 · doi:10.1051/cocv:1999109 [4] Bardos C., Lebeau G., Rauch J.: Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992) · Zbl 0786.93009 · doi:10.1137/0330055 [5] Burq N., Burq N., Burq N.: Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325(7), 749–752 (1997) · Zbl 0906.93008 · doi:10.1016/S0764-4442(97)80053-5 [6] Castro C., Zuazua E.: Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rational Mech. Anal. 164(1), 39–72 (2002) · Zbl 1016.35003 · doi:10.1007/s002050200202 [7] Chen X.-Y.: A strong unique continuation theorem for parabolic equations. Math. Ann. 311(4), 603–630 (1998) · Zbl 0990.35028 · doi:10.1007/s002080050202 [8] Coron J.-M., Guerrero S.: Local null controllability of the two-dimensional Navier-Stokes system in the torus with a control force having a vanishing component. J. Math. Pures Appl. (9) 92(5), 528–545 (2009) · Zbl 1179.35209 [9] Dáger R., Zuazua E.: Wave propagation, observation and control in 1-d flexible multi-structures. Mathématiques & Applications, Vol. 50. Springer, Berlin (2006) [10] Ervedoza S., Zuazua E.: A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1375–1401 (2010) · Zbl 1219.93011 · doi:10.3934/dcdsb.2010.14.1375 [11] Ervedoza, S., Zuazua, E.: Observability of heat processes by transmutation without geometric restrictions. Math. Control and Related Fields 1(2), (2011) · Zbl 1244.35028 [12] Fattorini H.O., Russell D.L.: Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43, 272–292 (1971) · Zbl 0231.93003 · doi:10.1007/BF00250466 [13] Fernández-Cara E., Zuazua E.: The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5(4–6), 465–514 (2000) · Zbl 1007.93034 [14] Fernández-Cara E., Zuazua E.: On the null controllability of the one-dimensional heat equation with BV coefficients. Comput. Appl. Math. 21(1), 167–190 (2002) Special issue in memory of Jacques-Louis Lions · Zbl 1119.93311 [15] Fursikov A.V., Imanuvilov O.Y.: Controllability of evolution equations. Lecture Notes Series, Vol. 34. Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul (1996) · Zbl 0862.49004 [16] Haraux A.: A generalized internal control for the wave equation in a rectangle. J. Math. Anal. Appl. 153(1), 190–216 (1990) · Zbl 0719.49008 · doi:10.1016/0022-247X(90)90273-I [17] John F.: Partial Differential Equations. Applied Mathematical Sciences, Vol. 1, 4th edn. Springer, New York (1982) [18] Frank Jones B. Jr.: A fundamental solution for the heat equation which is supported in a strip. J. Math. Anal. Appl. 60(2), 314–324 (1977) · Zbl 0357.35043 · doi:10.1016/0022-247X(77)90021-X [19] Lang S.: Introduction to Diophantine Approximations. Addison-Wesley Publishing Co., Reading (1966) · Zbl 0144.04005 [20] Lebeau G.: Contrôle analytique. I. Estimations a priori. Duke Math. J. 68(1), 1–30 (1992) · Zbl 0780.93053 · doi:10.1215/S0012-7094-92-06801-3 [21] Lebeau G.: Contrôle de l’équation de Schrödinger . J. Math. Pures Appl. (9) 71(3), 267–291 (1992) · Zbl 0838.35013 [22] Lebeau G., Robbiano L.: Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20(1–2), 335–356 (1995) · Zbl 0819.35071 · doi:10.1080/03605309508821097 [23] Lions, J.-L.: Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, volume RMA 8. Masson, 1988 · Zbl 0653.93002 [24] Micu S., de Teresa L.: A spectral study of the boundary controllability of the linear 2-D wave equation in a rectangle. Asymptot. Anal. 66(3–4), 139–160 (2010) · Zbl 1196.35129 [25] Micu S., Zuazua E.: On the controllability of a fractional order parabolic equation. SIAM J. Control Optim. 44(6), 1950–1972 (2006) · Zbl 1116.93022 · doi:10.1137/S036301290444263X [26] Micu S., Zuazua E.: Regularity issues for the null-controllability of the linear 1-d heat equation. Syst. Control Lett. 60, 406–413 (2011). doi: 10.1016/j.sysconle.2011.03.005 · Zbl 1225.93027 · doi:10.1016/j.sysconle.2011.03.005 [27] Miller L.: A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst. Ser. B 14(4), 1465–1485 (2010) · Zbl 1219.93017 · doi:10.3934/dcdsb.2010.14.1465 [28] Miller L.: Geometric bounds on the growth rate of null-controllability cost for the heat equation in small time. J. Differ. Equ. 204(1), 202–226 (2004) · Zbl 1053.93010 [29] Miller L.: On the null-controllability of the heat equation in unbounded domains. Bull. Sci. Math. 129(2), 175–185 (2005) · Zbl 1079.35018 · doi:10.1016/j.bulsci.2004.04.003 [30] Miller L.: The control transmutation method and the cost of fast controls. SIAM J. Control Optim. 45(2), 762–772 (2006) · Zbl 1109.93009 · doi:10.1137/S0363012904440654 [31] Miller L.: On exponential observability estimates for the heat semigroup with explicit rates. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. (9) 17(4), 351–366 (2006) · Zbl 1150.93006 · doi:10.4171/RLM/473 [32] Miller L.: On the controllability of anomalous diffusions generated by the fractional Laplacian. Math. Control Signals Syst. 18(3), 260–271 (2006) · Zbl 1105.93015 · doi:10.1007/s00498-006-0003-3 [33] Munch A., Zuazua E.: Numerical approximation of null controls for the heat equation through transmutation. J. Inverse Probl. 26(8), 085018 (2010). doi: 10.1088/0266-5611/26/8/085018 · Zbl 1203.35015 · doi:10.1088/0266-5611/26/8/085018 [34] Phung, K.D.: Waves, damped wave and observation. In: Li, T.-T., Peng, Y.-J., Rao, B.-P. (Eds.) Some Problems on Nonlinear Hyperbolic Equations and Applications. Series in Contemporary Applied Mathematics CAM 15 (2010) · Zbl 1223.35215 [35] Rauch J., Zhang X., Zhang X., Zhang X.: Polynomial decay for a hyperbolic-parabolic coupled system. J. Math. Pures Appl. (9) 84(4), 407–470 (2005) · Zbl 1077.35030 [36] Robbiano L.: Fonction de coût et contrôle des solutions des équations hyperboliques. Asympt. Anal. 10(2), 95–115 (1995) · Zbl 0882.35015 [37] Russell D.L.: A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52, 189–211 (1973) · Zbl 0274.35041 [38] Seidman T.I.: Time-invariance of the reachable set for linear control problems. J. Math. Anal. Appl. 72(1), 17–20 (1979) · Zbl 0419.93044 · doi:10.1016/0022-247X(79)90271-3 [39] Tenenbaum G., Tucsnak M.: New blow-up rates for fast controls of Schrödinger and heat equations. J. Differ. Equ. 243(1), 70–100 (2007) · Zbl 1127.93016 · doi:10.1016/j.jde.2007.06.019 [40] Widder D.V.: The role of the Appell transformation in the theory of heat conduction. Trans. Am. Math. Soc. 109, 121–134 (1963) · Zbl 0117.06604 · doi:10.1090/S0002-9947-1963-0154068-2 [41] Zuazua E.: Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. H. Poincaré Anal. Non Linéaire 10(1), 109–129 (1993) · Zbl 0769.93017 [42] Zuazua, E.: Some results and open problems on the controllability of linear and semilinear heat equations. In: Carleman Estimates and Applications to Uniqueness and Control Theory (Cortona, 1999). Progr. Nonlinear Differential Equations Appl.,Vol. 46, pp. 191–211. Birkhäuser Boston, Boston, 2001 · Zbl 0980.35034 [43] Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Dafermos, C.M., Elsevier Science Feireisl, E. (Eds.) Handbook of Differential Equations, Vol. 3, pp. 527–621 (2006) · Zbl 1193.35234 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.