zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust exponential stability for LPD discrete-time system with interval time-varying delay. (English) Zbl 1251.93104
Summary: We investigate the problem of robust exponential stability for uncertain linear-parameter dependent (LPD) discrete-time system with delay. The delay is of an interval type, which means that both lower and upper bounds for the time-varying delay are available. The uncertainty under consideration is norm-bounded uncertainty. Based on combination of the linear matrix inequality (LMI) technique and the use of suitable Lyapunov-Krasovskii functional, new sufficient conditions for the robust exponential stability are obtained in terms of LMI. Numerical examples are given to demonstrate the effectiveness and less conservativeness of the proposed methods.

MSC:
93D09Robust stability of control systems
WorldCat.org
Full Text: DOI
References:
[1] T. Botmart and P. Niamsup, “Robust exponential stability and stabilizability of linear parameter dependent systems with delays,” Applied Mathematics and Computation, vol. 217, no. 6, pp. 2551-2566, 2010. · Zbl 1207.93087 · doi:10.1016/j.amc.2010.07.068
[2] B. T. Cui and M. G. Hua, “Robust passive control for uncertain discrete-time systems with time-varying delays,” Chaos, Solitons and Fractals, vol. 29, no. 2, pp. 331-341, 2006. · Zbl 1147.93034 · doi:10.1016/j.chaos.2005.08.039
[3] M. Fang, “Delay-dependent stability analysis for discrete singular systems with time-varying delays,” Acta Automatica Sinica, vol. 36, no. 5, pp. 751-755, 2010. · doi:10.3724/SP.J.1004.2010.00751
[4] E. Fridman and U. Shaked, “Parameter dependent stability and stabilization of uncertain time-delay systems,” IEEE Transactions on Automatic Control, vol. 48, no. 5, pp. 861-866, 2003. · doi:10.1109/TAC.2003.811269
[5] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Birkhäuser, Berlin, Germany, 2003.
[6] Y. He, M. Wu, J. H. She, and G. P. Liu, “Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties,” IEEE Transactions on Automatic Control, vol. 49, no. 5, pp. 828-832, 2004. · doi:10.1109/TAC.2004.828317
[7] X. Liu, R. Martin, M. Wu, and M. Tang, “Delay-dependent robust stabilisation of discrete-time systems with time-varying delay,” IEE Proceedings-Control Theory and Applications, vol. 153, no. 6, pp. 689-702, 2006. · doi:10.1049/ip-cta:20050223
[8] W. J. Mao, “An LMI approach to D-stability and D-stabilization of linear discrete singular system with state delay,” Applied Mathematics and Computation, vol. 218, no. 5, pp. 1694-1704, 2011. · Zbl 1248.39015 · doi:10.1016/j.amc.2011.06.048
[9] W. J. Mao and J. Chu, “D-stability and D-stabilization of linear discrete time-delay systems with polytopic uncertainties,” Automatica, vol. 45, no. 3, pp. 842-846, 2009. · Zbl 1168.93400 · doi:10.1016/j.automatica.2008.11.003
[10] K. Mukdasai and P. Niamsup, “Robust stability of discrete-time linear parameter dependent system with delay,” Thai Journal of Mathematics, vol. 8, no. 4, pp. 11-20, 2010. · Zbl 1238.93077
[11] P. Niamsup and V. N. Phat, “H\infty control for nonlinear time-varying delay systems with convex polytopic uncertainties,” Nonlinear Analysis, vol. 72, no. 11, pp. 4254-4263, 2010. · Zbl 1189.93041 · doi:10.1016/j.na.2010.02.001
[12] M. De la Sen, “Robust stabilization of a class of polytopic linear time-varying continuous systems under point delays and saturating controls,” Applied Mathematics and Computation, vol. 181, no. 1, pp. 73-83, 2006. · Zbl 1143.93021 · doi:10.1016/j.amc.2006.01.013
[13] Z. G. Wu, P. Shi, H. Su, and J. Chu, “Delay-dependent exponential stability analysis for discretetime switched neural networks with time-varying delay,” Neurocomputing, vol. 74, no. 10, pp. 1626-1631, 2011.
[14] Y. Xia and Y. Jia, “Robust stability functionals of state delayed systems with polytopic type uncertainties via parameter-dependent Lyapunov functions,” International Journal of Control, vol. 75, no. 16-17, pp. 1427-1434, 2002. · Zbl 1078.93054 · doi:10.1080/0020717021000023834
[15] W. A. Zhang and L. Yu, “Stability analysis for discrete-time switched time-delay systems,” Automatica, vol. 45, no. 10, pp. 2265-2271, 2009. · Zbl 1179.93145 · doi:10.1016/j.automatica.2009.05.027