×

Analysis of edge detection in bar code symbols: an overview and open problems. (English) Zbl 1251.94007

Summary: Accurate edge localization is essential in bar code decoding. Since speckle noise is the most dominant form of noise in laser bar code scanners, it is important to fully understand its effects on edge detection. Starting with the basic statistical properties of speckle patterns, we present stochastic analysis of speckle noise. We derive the autocorrelation function and power spectral density (PSD) of the noise in terms of intensity distribution of the scanning beam. We then study the signal-to-noise ratio for signals that result from scanning different configurations of edges. Next, we consider statistical properties of edge localization error caused by speckle noise. We show that the standard deviation of the error is determined by the PSD of the noise and relative positions of edges in a bar code symbol. Based on the analysis presented here, we propose new criteria for system design.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68T10 Pattern recognition, speech recognition
68U10 Computing methodologies for image processing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. C. Palmer, The Bar Code Book, Helmers Publishing, Peterborough, UK, 4th edition, 2001. · Zbl 1198.37028 · doi:10.1006/jdeq.2000.3988
[2] S. Kre-Jurić, D. Madej, and F. Santosa, “Applications of hidden Markov models in bar code decoding,” Pattern Recognition Letters, vol. 27, no. 14, pp. 1665-1672, 2006. · doi:10.1016/j.patrec.2006.03.014
[3] L. Rabiner and B. Juang, Fundamentals of Speech Recognition, Prentice Hall, NJ, USA, 1993. · Zbl 0762.62036
[4] S. Esedoglu, “Blind deconvolution of bar code signals,” Inverse Problems, vol. 20, no. 1, pp. 121-135, 2004. · Zbl 1045.94502 · doi:10.1088/0266-5611/20/1/007
[5] R. Acar and C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems,” Inverse Problems, vol. 10, no. 6, pp. 1217-1229, 1994. · Zbl 0809.35151 · doi:10.1088/0266-5611/10/6/003
[6] T. F. Chan and C. K. Wong, “Total variation blind deconvolution,” IEEE Transactions on Image Processing, vol. 7, no. 3, pp. 370-375, 1998.
[7] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica Ds, vol. 60, no. 1-4, pp. 259-268, 1992. · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[8] C. R. Vogel and M. E. Oman, “Fast, robust total variation-based reconstruction of noisy, blurred images,” IEEE Transactions on Image Processing, vol. 7, no. 6, pp. 813-824, 1998. · Zbl 0993.94519 · doi:10.1109/83.679423
[9] D. C. Dobson and F. Santosa, “Recovery of blocky images from noisy and blurred data,” SIAM Journal on Applied Mathematics, vol. 56, no. 4, pp. 1181-1198, 1996. · Zbl 0858.68121 · doi:10.1137/S003613999427560X
[10] S. Osher and L. I. Rudin, “Feature-oriented image enhancement using shock filters,” SIAM Journal on Numerical Analysis, vol. 27, no. 4, pp. 919-940, 1990. · Zbl 0714.65096 · doi:10.1137/0727053
[11] J. A. Sethian, Level Set Methods, vol. 3 of Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge, UK, 1996. · Zbl 0859.76004
[12] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629-639, 1990. · doi:10.1109/34.56205
[13] S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,” Institute of Electrical and Electronics Engineers. Transactions on Information Theory, vol. 38, no. 2, part 2, pp. 617-643, 1992. · Zbl 0745.93073 · doi:10.1109/18.119727
[14] A. Grossmann, “Wavelet transforms and edge detection,” in Stochastic Processes in Physics and Engineering, M. Hazawinkel, Ed., vol. 42, pp. 149-157, Reidel, Dordrecht, The Netherlands, 1988. · Zbl 0709.94518
[15] Y. Lu and R. C. Jain, “Reasoning about edges in scale space,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 4, pp. 450-468, 1992. · doi:10.1109/34.126806
[16] J. Sun, D. Gu, Y. Chen, and S. Zhang, “A multiscale edge detection algorithm based on wavelet domain vector hidden Markov tree model,” Pattern Recognition, vol. 37, no. 7, pp. 1315-1324, 2004. · Zbl 1069.68594 · doi:10.1016/j.patcog.2003.11.006
[17] L. Zhang and P. Bao, “Edge detection by scale multiplication in wavelet domain,” Pattern Recognition Letters, vol. 23, no. 14, pp. 1771-1784, 2002. · Zbl 1010.68138 · doi:10.1016/S0167-8655(02)00151-4
[18] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, Calif, USA, 1998. · Zbl 0937.94001
[19] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698, 1986.
[20] E. Joseph and T. Pavlidis, “Bar code waveform recognition using peak locations,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 630-640, 1994. · doi:10.1109/34.295907
[21] A. M. Vasilyev, An Introduction To Statistical Physics, Mir Publishers, Moscow, Russia, 1983.
[22] F. Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New York, NY, USA, 1965.
[23] J. B. Johnson, “Thermal agitation of electricity in conductors,” Physical Review, vol. 32, no. 1, pp. 97-109, 1928. · doi:10.1103/PhysRev.32.97
[24] H. Nyquist, “Thermal agitation of electric charge in conductors,” Physical Review, vol. 32, no. 1, pp. 110-113, 1928. · doi:10.1103/PhysRev.32.110
[25] W. Schottky, “Über spontane Stromschwankungen in verschiedenen Elektrizitätsleitern,” Annalen der Physik, vol. 362, no. 23, pp. 541-567, 1918. · doi:10.1002/andp.19183622304
[26] R. Sarpeshkar, T. Delbruck, and C. A. Mead, “White noise in MOS transistors and resistors,” IEEE Circuits and Devices Magazine, vol. 9, no. 6, pp. 23-29, 1993.
[27] Y. M. Blanter and M. Büttiker, “Shot noise in mesoscopic conductors,” Physics Report, vol. 336, no. 1-2, pp. 1-166, 2000.
[28] J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed., pp. 9-75, Springer, Berlin, Germany, 2nd edition, 1984.
[29] J. C. Dainty, “Recent Developments,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed., pp. 321-337, Springer, Berlin, Germany, 2nd edition, 1984.
[30] T. Okamoto and T. Asakura, “The statistics of dynamic speckles,” in Progress in Optics, E. Wolf, Ed., vol. 39, pp. 185-248, Elsevier Science, Amsterdam, The Netherlands, 1995.
[31] J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, NY, USA, 2nd edition, 1996.
[32] E. Marom, S. Kre\vsic-Jurić, and L. Bergstein, “Analysis of speckle noise in bar-code scanning systems,” Journal of the Optical Society of America A, vol. 18, no. 4, pp. 888-901, 2001.
[33] D. Yu, M. Stern, and J. Katz, “Speckle noise in laser bar-code scanner systems,” Applied Optics, no. 19, pp. 3687-3694, 1996.
[34] J. W. Goodman, Statistical Optics, Wiley, New York, NY, USA, 1985.
[35] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, The Clarendon Press Oxford University Press, New York, NY, USA, 2nd edition, 1992. · Zbl 0759.60002
[36] G. Gilbert, A. Aspect, and C. Fabre, Introduction to Quantum Optics: from the Semi-Classical Approach to Quantized Light, Cambridge University Press, Cambridge, UK, 2010. · Zbl 1208.81001
[37] A. E. Ennos, “Speckle interferometry,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed., pp. 203-253, Springer, Berlin, Germany, 2nd edition, 1984.
[38] J. Kim and H. Lee, “Joint nonuniform illumination estimation and deblurring for bar code signals,” Optics Express, vol. 15, no. 22, pp. 14817-14837, 2007. · doi:10.1364/OE.15.014817
[39] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of the Royal Society of London, vol. 207, no. 1167, pp. 187-217, 1980.
[40] S. Kre-Jurić, “Edge detection in bar code signals corrupted by integrated time-varying speckle,” Pattern Recognition, vol. 38, no. 12, pp. 2483-2493, 2005. · doi:10.1016/j.patcog.2005.04.009
[41] L. Wu and Z. Xie, “Scaling theorems for zero-crossings,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 46-54, 1990. · doi:10.1109/34.41383
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.