zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Integral representations for harmonic functions of infinite order in a cone. (English) Zbl 1252.31004
Summary: A harmonic function of infinite order defined in an $n$-dimensional cone and continuous in the closure can be represented in terms of the modified Poisson integral and an infinite sum of harmonic polynomials vanishing on the boundary.

31B10Integral representations of harmonic functions (higher-dimensional)
31C05Generalizations of harmonic (subharmonic, superharmonic) functions
Full Text: DOI
[1] Carleman T.: Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen. Ark. för Mat. Astr. och Fysik. 17, 1--30 (1923) · Zbl 49.0708.03
[2] Deng G.T.: Integral representations of harmonic functions in half spaces. Bull. Sci. Math. 131, 53--59 (2007) · Zbl 1111.31002 · doi:10.1016/j.bulsci.2006.03.008
[3] Finkelstein M., Scheinberg S.: Kernels for solving problems of Dirichlet typer in a half-plane. Adv. Math. 18(1), 108--113 (1975) · Zbl 0309.31001 · doi:10.1016/0001-8708(75)90004-3
[4] Gardiner S.: The Dirichlet and Neumann problems for harmonic functions in half-spaces. J. Lond. Math. Soc. 24(2), 502--512 (1981) · Zbl 0466.31013 · doi:10.1112/jlms/s2-24.3.502
[5] Gilbarg D., Trudinger N.S.: Elliptic partial differential equations of second order. Springer, Berlin (1977) · Zbl 0361.35003
[6] Hayman W.K., Kennedy P.B.: Subharmonic functions, vol. 1. Academic Press, London (1976) · Zbl 0419.31001
[7] Rashkovskii A.Yu., Ronkin L.I.: Subharmonic functions of finite order in a cone. I (General theory). Teor. Funkts. Funkts. Anal. Ikh Prilozh. 54, 74--89 (1990)
[8] Ronkin L.I.: Functions of Completely Regular Growth (Soviet series), vol. 81. Kluwer Academic Publishers’ Group, Dordrecht (1992) · Zbl 0754.32001
[9] Rosenblum G., Solomyak M., Shubin M.: Spectral Theory of Differential Operators. VINITI, Moscow (1989) · Zbl 0805.35081
[10] Siegel D., Talvila E.: Sharp growth estimates for modified Poisson integrals in a half space. Potential Anal. 15, 333--360 (2001) · Zbl 0987.31003 · doi:10.1023/A:1011817130061
[11] Yoshida H., Miyamoto I.: Solutions of the Dirichlet problem on a cone with continuous data. J. Math. Soc. Jpn. 50(1), 71--93 (1998) · Zbl 0907.31001 · doi:10.2969/jmsj/05010071
[12] Yoshida H., Miyamoto I.: Harmonic functions in a cone which vanish on the boundary. Math. Nachr. 202, 177--187 (1999) · Zbl 0929.31001 · doi:10.1002/mana.19992020115