Gepreel, Khaled A.; Shehata, A. R. Rational Jacobi elliptic solutions for nonlinear differential-difference lattice equations. (English) Zbl 1252.34013 Appl. Math. Lett. 25, No. 9, 1173-1178 (2012). Summary: We present a direct new method for constructing the rational Jacobi elliptic solutions for nonlinear differential-difference equations, which may be called the rational Jacobi elliptic function method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential-difference equations in mathematical physics via the lattice equation. The proposed method is effective for obtaining the exact solutions for nonlinear differential-difference equations. Cited in 4 Documents MSC: 34A33 Ordinary lattice differential equations 34A05 Explicit solutions, first integrals of ordinary differential equations Keywords:Jacobi elliptic function; traveling wave solutions; lattice equation PDF BibTeX XML Cite \textit{K. A. Gepreel} and \textit{A. R. Shehata}, Appl. Math. Lett. 25, No. 9, 1173--1178 (2012; Zbl 1252.34013) Full Text: DOI References: [1] Fermi, E.; Pasta, J.; Ulam, S., Collected Papers of Enrico Fermi II (1965), University of Chicago Press: University of Chicago Press Chicago, IL [2] Su, W. P.; Schrieffer, J. R.; Heeger, A. J., Solitons in polyacetylene, Phys. Rev. Lett., 42, 1698-1701 (1979) [3] Davydov, A. S., The theory of contraction of proteins under their excitation, J. Theoret. Biol., 38, 559-569 (1973) [4] Marquié, P.; Bilbault, J. M.; Remoissenet, M., Observation of nonlinear localized modes in an electrical lattice, Phys. Rev. E, 51, 6127-6133 (1995) [5] Toda, M., Theory of Nonlinear Lattices (1989), Springer: Springer Berlin · Zbl 0694.70001 [6] Wadati, M., Transformation theories for nonlinear discrete systems, Prog. Suppl. Theor. Phys., 59, 36-63 (1976) [7] Ohta, Y.; Hirota, R., A discrete KdV equation and its Casorati determinant solution, J. Phys. Soc. Japan, 60, 2095 (1991) [8] Ablowitz, M. J.; Ladik, J., Nonlinear differential-difference equations, J. Math. Phys., 16, 598-603 (1975) · Zbl 0296.34062 [9] Hu, X. B.; Ma, W. X., Application of Hirota’s bilinear formalism to the Toeplitz lattice some special soliton-like solutions, Phys. Lett. A, 293, 161-165 (2002) · Zbl 0985.35072 [10] Baldwin, D.; Goktas, U.; Hereman, W., Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations, Comput. Phys. Commun., 162, 203-217 (2004) · Zbl 1196.68324 [11] Liu, S. K.; Fu, Z. T.; Wang, Z. G.; Liu, S. D., Periodic solutions for a class of nonlinear differential-difference equations, Commun. Theor. Phys., 49, 1155-1158 (2008) · Zbl 1392.34085 [12] Qiong, C.; Bin, L., Application of Jacobi elliptic function expansion method for nonlinear difference equations, Commun. Theor. Phys., 43, 385-388 (2005) [13] Xie, F.; Jia, M.; Zhao, H., Some solutions of discrete sine-Gordon equation, Chaos Solitons Fractals, 33, 1791-1795 (2007) · Zbl 1129.35456 [14] Zhu, S. D., Exp-function method for the hybrid-lattice system, Int. J. Nonlinear Sci., 8, 461 (2007) [15] Aslan, I., A discrete generalization of the extended simplest equation method, Commun. Nonlinear Sci. Numer. Simul., 15, 1967-1973 (2010) · Zbl 1222.65114 [16] Yang, P.; Chen, Y.; Li, Z. B., ADM-Padé technique for the nonlinear lattice equations, Appl. Math. Comput., 210, 362-375 (2009) · Zbl 1162.65399 [17] Zhu, S. D.; Chu, Y. M.; Qiu, S. L., The homotopy perturbation method for discontinued problems arising in nanotechnology, Comput. Math. Appl., 58 (2009) · Zbl 1189.65186 [18] Zhang, S.; Dong, L.; Ba, J.; Sun, Y., The (G’/G)-expansion method for nonlinear differential-difference equations, Phys. Lett. A, 373, 905-910 (2009) · Zbl 1228.34096 [19] Aslan, I., The Ablowitz-Ladik lattice system by means of the extended \((G^\prime / G)\)-expansion method, Appl. Math. Comput., 216, 2778-2782 (2010) · Zbl 1193.35179 [20] Zhang, S., Discrete Jacobi elliptic function expansion method for nonlinear difference equation, Phys. Scr., 80, 045002-045010 (2009) [21] Gepreel, Khaled A., Rational Jacobi elliptic solutions for nonlinear difference differential equations, Nonlinear Sci. Lett. A, 2, 151-158 (2011) [22] Wu, G.; Xia, T., A new method for constructing soliton solutions to differential-difference equation with symbolic computation, Chaos Solitons Fractals, 39, 2245-2248 (2009) · Zbl 1197.35250 [23] Xie, F.; Wang, J., A new method for solving nonlinear differential-difference equation, Chaos Solitons Fractals, 27, 1067-1071 (2006) · Zbl 1094.34058 [24] Liu, C., Exponential function rational expansion method for nonlinear differential-difference equations, Chaos Solitons Fractals, 40, 708-716 (2009) · Zbl 1197.35243 [25] Wang, Q.; Yu, Y., New rational formal for (1+1)-dimensional Toda equation and another Toda equation, Chaos Solitons Fractals, 29, 904-915 (2006) · Zbl 1142.37370 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.