×

Uniqueness of traveling waves for a two-dimensional bistable periodic lattice dynamical system. (English) Zbl 1252.34014

Author’s abstract: We study traveling waves for a two-dimensional lattice dynamical system with bistable nonlinearity in periodic media. The existence and the monotonicity in time of traveling waves can be derived in the same way as the one-dimensional lattice case. In this paper, we derive the uniqueness of nonzero speed traveling waves by using the comparison principle and the sliding method.

MSC:

34A33 Ordinary lattice differential equations

Keywords:

37L60; 34A12
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] R. A. Fisher, “The wave of advance of advantageous genes,” Annals of Eugenics, vol. 7, pp. 355-369, 1937.
[2] A. N. Kolmogorov, I. G. Petrovsky, and N. S. Piscounov, “Etude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,” Bulletin de l’Universite d’Etat à Moscou Serie International section A, vol. 1, pp. 1-25, 1937. · Zbl 0018.32106
[3] B. Zinner, G. Harris, and W. Hudson, “Traveling wavefronts for the discrete Fisher’s equation,” Journal of Differential Equations, vol. 105, no. 1, pp. 46-62, 1993. · Zbl 0778.34006 · doi:10.1006/jdeq.1993.1082
[4] S.-C. Fu, J.-S. Guo, and S.-Y. Shieh, “Traveling wave solutions for some discrete quasilinear parabolic equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 48, no. 8, pp. 1137-1149, 2002. · Zbl 1092.34012 · doi:10.1016/S0362-546X(00)00242-X
[5] X. Chen and J.-S. Guo, “Existence and asymptotic stability of traveling waves of discrete quasilinear monostable equations,” Journal of Differential Equations, vol. 184, no. 2, pp. 549-569, 2002. · Zbl 1010.39004 · doi:10.1006/jdeq.2001.4153
[6] X. Chen and J.-S. Guo, “Uniqueness and existence of traveling waves for discrete quasilinear monostable dynamics,” Mathematische Annalen, vol. 326, no. 1, pp. 123-146, 2003. · Zbl 1086.34011 · doi:10.1007/s00208-003-0414-0
[7] J. Carr and A. Chmaj, “Uniqueness of travelling waves for nonlocal monostable equations,” Proceedings of the American Mathematical Society, vol. 132, no. 8, pp. 2433-2439, 2004. · Zbl 1061.45003 · doi:10.1090/S0002-9939-04-07432-5
[8] X. Chen, S.-C. Fu, and J.-S. Guo, “Uniqueness and asymptotics of traveling waves of monostable dynamics on lattices,” SIAM Journal on Mathematical Analysis, vol. 38, no. 1, pp. 233-258, 2006. · Zbl 1117.34060 · doi:10.1137/050627824
[9] J.-S. Guo and F. Hamel, “Front propagation for discrete periodic monostable equations,” Mathematische Annalen, vol. 335, no. 3, pp. 489-525, 2006. · Zbl 1116.35063 · doi:10.1007/s00208-005-0729-0
[10] B. Zinner, “Stability of traveling wavefronts for the discrete Nagumo equation,” SIAM Journal on Mathematical Analysis, vol. 22, no. 4, pp. 1016-1020, 1991. · Zbl 0739.34060 · doi:10.1137/0522066
[11] B. Zinner, “Existence of traveling wavefront solutions for the discrete Nagumo equation,” Journal of Differential Equations, vol. 96, no. 1, pp. 1-27, 1992. · Zbl 0752.34007 · doi:10.1016/0022-0396(92)90142-A
[12] S.-N. Chow, J. Mallet-Paret, and W. Shen, “Traveling waves in lattice dynamical systems,” Journal of Differential Equations, vol. 149, no. 2, pp. 248-291, 1998. · Zbl 0911.34050 · doi:10.1006/jdeq.1998.3478
[13] J. Mallet-Paret, “The Fredholm alternative for functional-differential equations of mixed type,” Journal of Dynamics and Differential Equations, vol. 11, no. 1, pp. 1-47, 1999. · Zbl 0927.34049 · doi:10.1023/A:1021889401235
[14] J. Mallet-Paret, “The global structure of traveling waves in spatially discrete dynamical systems,” Journal of Dynamics and Differential Equations, vol. 11, no. 1, pp. 49-127, 1999. · Zbl 0921.34046 · doi:10.1023/A:1021841618074
[15] P. W. Bates, X. Chen, and A. J. J. Chmaj, “Traveling waves of bistable dynamics on a lattice,” SIAM Journal on Mathematical Analysis, vol. 35, no. 2, pp. 520-546, 2003. · Zbl 1050.37041 · doi:10.1137/S0036141000374002
[16] X. Chen, J.-S. Guo, and C.-C. Wu, “Traveling waves in discrete periodic media for bistable dynamics,” Archive for Rational Mechanics and Analysis, vol. 189, no. 2, pp. 189-236, 2008. · Zbl 1152.37033 · doi:10.1007/s00205-007-0103-3
[17] J. W. Cahn, J. Mallet-Paret, and E. S. Van Vleck, “Traveling wave solutions for systems of ODEs on a two-dimensional spatial lattice,” SIAM Journal on Applied Mathematics, vol. 59, no. 2, pp. 455-493, 1999. · Zbl 0917.34052 · doi:10.1137/S0036139996312703
[18] J.-S. Guo and C.-H. Wu, “Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system,” Osaka Journal of Mathematics, vol. 45, no. 2, pp. 327-346, 2008. · Zbl 1155.34016
[19] J.-S. Guo and C.-H. Wu, “Front propagation for a two-dimensional periodic monostable lattice dynamical system,” Discrete and Continuous Dynamical Systems, vol. 26, no. 1, pp. 197-223, 2010. · Zbl 1195.34118 · doi:10.3934/dcds.2010.26.197
[20] P. C. Fife and J. B. McLeod, “The approach of solutions of nonlinear diffusion equations to travelling front solutions,” Archive for Rational Mechanics and Analysis, vol. 65, no. 4, pp. 335-361, 1977. · Zbl 0361.35035 · doi:10.1007/BF00250432
[21] J. P. Keener, “Propagation and its failure in coupled systems of discrete excitable cells,” SIAM Journal on Applied Mathematics, vol. 47, no. 3, pp. 556-572, 1987. · Zbl 0649.34019 · doi:10.1137/0147038
[22] S.-G. Liao and C.-C. Wu, “Propagation failure in discrete periodic media,” Preprint. In press.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.