zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Riemann problem for the isentropic relativistic Chaplygin Euler equations. (English) Zbl 1252.35200
The authors consider the Riemann problem for the Euler system of conservation laws for a perfect isentropic Chaplygin gas in special relativity. Solutions are classified: four classes consist of contact discontinuities, while the fifth class is a delta-shock. The generalized Rankine-Hugoniot relation and the overcompressive entropy conditions are proposed; then the existence and uniqueness of the delta-shock is proven.

MSC:
35L67Shocks and singularities
35L65Conservation laws
35L45First order hyperbolic systems, initial value problems
35Q75PDEs in connection with relativity and gravitational theory
35Q31Euler equations
WorldCat.org
Full Text: DOI
References:
[1] Liang E.: Relativistic simple waves: shock damping and entropy production. Astrophys. J. 211, 361--376 (1977) · doi:10.1086/154942
[2] Taub A.: Approximate solutions of the Einstein equations for isentropic motions of plane-symmetric distributions of perfect fluids. Phys. Rev. 107, 884--900 (1957) · Zbl 0080.18306 · doi:10.1103/PhysRev.107.884
[3] Pant V.: Global entropy solutions for isentropic relativistic fluid dynamics. Commun. Partial Differ. Equ. 21, 1609--1641 (1996) · Zbl 0863.76099 · doi:10.1080/03605309608821240
[4] Chen G., LeFloch P.: Compressible Euler equations with general pressure law. Arch. Rational Mech. Anal. 153, 221--259 (2000) · Zbl 0970.76082 · doi:10.1007/s002050000091
[5] Chen G., LeFloch P.: Existence theory for the isentropic Euler equations. Arch. Rational Mech. Anal. 166, 81--98 (2003) · Zbl 1027.76043 · doi:10.1007/s00205-002-0229-2
[6] Chen G., Li Y.: Relativistic Euler equations for isentropic fluids: stability of Riemann solutions with large oscillation. Z. Angew. Math. Phys. 55, 903--926 (2004) · Zbl 1068.35099 · doi:10.1007/s00033-004-3097-9
[7] Li Y., Shi Q.: Global existence of the entropy solutions to the isentropic relativistic Euler equations. Comm. Pure Appl. Anal. 4, 763--778 (2005) · Zbl 1097.35103 · doi:10.3934/cpaa.2005.4.763
[8] Li Y., Geng Y.: Global limits of entropy solutions to isentropic relativistic Euler equations. Z. Angew. Math. Phys. 57, 960--983 (2006) · Zbl 1161.35321 · doi:10.1007/s00033-006-0059-4
[9] Chang, T., Hsiao, L.: The Riemann problem and interaction of waves in gas dynamics. Longman Scientific and Technical, Pitman Monographs and Surveys in Pure and Applied Mathematics, No.41. Essex (1989) · Zbl 0698.76078
[10] Chaplygin S.: On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 21, 1--121 (1904)
[11] Tsien H.: Two dimensional subsonic flow of compressible fluids. J. Aeron. Sci. 6, 399--407 (1939) · Zbl 0063.07865 · doi:10.2514/8.916
[12] von Karman T.: Compressibility effects in aerodynamics. J. Aeron. Sci. 8, 337--365 (1941) · Zbl 67.0853.01 · doi:10.2514/8.10737
[13] Setare M.: Interacting holographic generalized Chaplygin gas model. Phys. Lett. B 654, 1--6 (2007) · Zbl 1248.83179 · doi:10.1016/j.physletb.2007.08.038
[14] Cruz N., Lepe S., Pena F.: Dissipative generalized Chaplygin gas as phantom dark energy physics. Phys. Lett. B 646, 177--182 (2007) · doi:10.1016/j.physletb.2006.12.070
[15] Setare M.: Holographic Chaplygin gas model. Phys. Lett. B 648, 329--332 (2007) · Zbl 1248.83179 · doi:10.1016/j.physletb.2007.03.025
[16] Bilic, N., Tupper, G., Viollier, R.: Dark Matter, Dark Energy and the Chaplygin Gas. arXiv:astro-ph/0207423 · Zbl 1117.83394
[17] Gorini, V., Kamenshchik, A., Moschella, U., Pasquier, V.: The Chaplygin Gas as a Model for Dark Energy. arXiv:gr-qc/040362 · Zbl 1179.83045
[18] Brenier Y.: Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas equations. J. Math. Fluid Mech. 7, S326--S331 (2005) · Zbl 1085.35097 · doi:10.1007/s00021-005-0162-x
[19] Guo L., Sheng W., Zhang T.: The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system. Commun. Pure Appl. Anal. 9, 431--458 (2010) · Zbl 1197.35164 · doi:10.3934/cpaa.2010.9.431
[20] Tan D., Zhang T.: Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (I) Four-J cases. J. Differ. Equ. 111, 203--254 (1994) · Zbl 0803.35085 · doi:10.1006/jdeq.1994.1081
[21] Tan D., Zhang T., Zheng Y.: Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws. J. Differ. Equ. 112(1), 1--32 (1994) · Zbl 0804.35077 · doi:10.1006/jdeq.1994.1093
[22] Keyfit B., Kranzer H.: Spaces of weighted measures for conservation laws with singular shock solutions. J. Differ. Equ. 118, 420--451 (1995) · Zbl 0821.35096 · doi:10.1006/jdeq.1995.1080
[23] Sheng W., Zhang T.: The Riemann problem for transportation equation in gas dynamics. Mem. Am. Math. Soc. 137(654), 1--77 (1999) · Zbl 0913.35082
[24] Li, J., Zhang, T.: Generalized Rankine--Hugoniot relations of delta shocks in solutions of transportation equations. In: Chen G.-Q. et al. (eds.) Advances in Nonlinear Partial Differential Equations and Related Areas (Beijing, 1997), pp: 219--232. World Scientific publishing, River Edge (1998)
[25] Yang H.: Riemann problems for a class of coupled hyperbolic systems of conservation laws. J. Differ. Equ. 159, 447--484 (1999) · Zbl 0948.35079 · doi:10.1006/jdeq.1999.3629
[26] Chen G., Liu H.: Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the isentropic Euler equations. SIAM J. Math. Anal. 34, 925--938 (2003) · Zbl 1038.35035 · doi:10.1137/S0036141001399350
[27] Chen G., Liu H.: Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids. Physica D 189, 141--165 (2004) · Zbl 1098.76603 · doi:10.1016/j.physd.2003.09.039
[28] Danilov V., Shelkovich V.: Dynamics of propagation and interaction of {$\delta$}-shock waves in conservation laws systems. J. Differ. Equ. 221, 333--381 (2005) · Zbl 1072.35121 · doi:10.1016/j.jde.2004.12.011
[29] Shelkovich V.: The Riemann problem admitting {$\delta$}, {$\delta$}’-shocks, and vacuum states (the vanishing viscosity approach). J. Differ. Equ. 231, 459--500 (2006) · Zbl 1108.35117 · doi:10.1016/j.jde.2006.08.003
[30] Cheng H., Yang H.: Delta shock waves in chromatography equations. J. Math. Anal. Appl. 380, 475--485 (2011) · Zbl 1217.35120 · doi:10.1016/j.jmaa.2011.04.002
[31] Cheng H., Yang H.: Delta shock waves as limits of vanishing viscosity for 2-D steady pressureless isentropic flow. Acta Appl. Math. 113, 323--348 (2011) · Zbl 1216.35080 · doi:10.1007/s10440-010-9602-6
[32] Lax P.: Hyperbolic system of conservation laws II. Comm. Pure Appl. Math. 10, 537--566 (1957) · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[33] Li J., Li W.: Riemann problem for the zero-pressure flow in gas dynamics. Prog. Nat. Sci. 11, 331--344 (2001)
[34] Li Z., Sheng W.: The Riemann problem of adiabatic Chaplygin gas dynamic system. Commun. Appl. Math. Comput. 24, 9--16 (2010) · Zbl 1228.76136
[35] Cheng H., Yang H., Zhang Y.: Riemann problem for the Chaplygin Euler equations of compressible fluid flow. Int. J. Nonlinear Sci. Num. 11, 985--992 (2010)