×

A generalized Tu formula and Hamiltonian structures of fractional AKNS hierarchy. (English) Zbl 1252.37063

Summary: In this Letter, a generalized Tu formula is firstly presented to construct Hamiltonian structures of fractional soliton equations. The obtained results can be reduced to the classical Hamiltonian hierarchy of AKNS (Ablowitz-Kaup-Newell-Segur) in ordinary calculus.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., Theory and applications of fractional differential equations, (2006), Elsevier Science B.V. Amsterdam · Zbl 1092.45003
[2] Kiryakova, V., Generalized fractional calculus and applications, (1994), Longman Scientific & Technical Harlow, copublished in the United States with John Wiley & Sons, Inc., New York · Zbl 0882.26003
[3] Lakshmikantham, V.; Vatsala, A.S., Nonlinear anal., 69, 2677, (2008)
[4] Miller, K.S.; Ross, B., An introduction to the fractional calculus and differential equations, (1993), John Wiley & Sons New York · Zbl 0789.26002
[5] Podlubny, I., Fractional differential equation, (1999), Academic Press San Diego · Zbl 0893.65051
[6] Riewe, F.; Riewe, F., Phys. rev. E, Phys. rev. E, 55, 3581, (1997)
[7] Frederico, G.S.F.; Torres, Delfim F.M., Nonlinear dyn., 53, 215, (2008)
[8] Wu, G.C., Commun. frac. calc., 1, 27, (2010)
[9] Baleanu, D.; Muslih, S.I., Phys. scr., 72, 119, (2005)
[10] Baleanu, D.; Agrawal, O.P., Czech J. phys., 56, 1087, (2006)
[11] El-Nabulsi, R.A.; El-Nabulsi, R.A.; El-Nabulsi, R.A.; Torres, D.F.M., Fizika, Int. J. appl. math., J. math. phys., 49, 053521, (2008)
[12] Agrawal, O.P.; Agrawal, O.P., J. phys. A: math. theor., J. phys. A: math. theor., 40, 6287, (2007) · Zbl 1126.26007
[13] Tarasov, V.E., J. phys. A: math. gen., 39, 8409, (2006)
[14] Jumarie, G., Chaos solitons fract., 32, 969, (2007)
[15] Almeida, R.; Malinowska, A.B.; Torres, D.F.M., J. math. phys., 51, 033503, (2010)
[16] Malinowska, A.B.; Ammi, M.R.S.; Torres, D.F.M., Commun. frac. calc., 1, 32, (2010)
[17] Fujioka, J., Phys. lett. A, 374, 1126, (2010)
[18] Fujioka, J., Commun. frac. calc., 1, 1, (2010)
[19] Tu, G.Z., J. math. phys., 30, 330, (1989)
[20] Purkait, S.; Chowdhury, A.R., J. phys. A: math. gen., 23, L591, (1990) · Zbl 0729.35122
[21] Guo, F.K.; Zhang, Y.F., J. phys. A: math. gen., 38, 8537, (2005)
[22] Xia, T.C.; You, F.C.; Chen, D.Y., Chaos solitons fract., 23, 1911, (2005)
[23] Ma, W.X.; Fuchssteiner, B., Phys. lett. A, 213, 49, (1996) · Zbl 0863.35106
[24] Nicholas, M.E.; Guadalupe, T.L., Physica D, 218, 105, (2006)
[25] Ma, W.X.; Xu, X.X.; Zhang, Y.F., J. math. phys., 47, 053501, (2006)
[26] Ma, W.X.; Chen, M., J. phys. A: math. gen., 39, 10787, (2006)
[27] Kolwankar, K.M.; Gangal, A.D., Chaos, 6, 505, (1996)
[28] Kolwankar, K.M.; Gangal, A.D., Pramana J. phys., 48, 49, (1997)
[29] Kolwankar, K.M.; Gangal, A.D., Phys. rev. lett., 80, 214, (1998)
[30] Chen, W., Chaos solitons fract., 28, 923, (2006)
[31] Chen, W.; Sun, H.G., Mod. phys. lett. B, 23, 449, (2009)
[32] Cresson, J.; Cresson, J., J. math. phys., J. math. anal. appl., 307, 48, (2005)
[33] Jumarie, G., Comput. math. appl., 51, 1367, (2006)
[34] Parvate, A.; Gangal, A.D., Fractals, 17, 53, (2009)
[35] Wu, G.C.; Lee, E.W.M.; Wu, G.C.; Wu, G.C., Phys. lett. A, Comput. math. appl., Math. comput. model., 54, 2104, (2011)
[36] X.J. Yang, Research on fractal mathematics and some applications in mechanics, MS Thesis, China University of Mining and Technology, 2009 (in Chinese).
[37] X. Li, M. Davison, C. Essex, On the concept of local fractional differentiation, preprint, http://www.apmaths.uwo.ca/mdavison/_library/preprints/lfd2.pdf.
[38] Chen, Y.; Yan, Y.; Zhang, K.W., J. math. anal. appl., 362, 17, (2010)
[39] Jumarie, G., Appl. math. lett., 22, 1659, (2009)
[40] Carpinteri, A.; Chiaia, B.; Cornetti, P., Z. angew. math. mech., 84, 128, (2004)
[41] Nottale, L.; Nottale, L., Fractal space-time and microphysics, Chaos solitons fract., 7, 877, (1996), World Scientific Singapore · Zbl 1080.81525
[42] Jumarie, G., J. appl. math. comput., 23, 215, (2007)
[43] Adda, F. Ben; Adda, F. Ben, C.R. acad. sci. serié I. math., J. fractional calculus, 11, 21, (1997), (in French)
[44] Adda, F. Ben, Nonlinear anal., 47, 5423, (2001)
[45] Cottrill-Shepherd, K.; Naber, M.; Cottrill-Shepherd, K.; Naber, M., Fractional differential forms II, J. math. phys., 42, 2203, (2001), preprint · Zbl 1011.58001
[46] Chen, Y.; Yan, Z.Y.; Zhang, H.Q., Appl. math. mech., 24, 256, (2003)
[47] Kazbekov, K.K., Vladikavkaz math. J., 7, 41, (2005), (in Russian)
[48] Tarasov, V.E., Ann. phys. (N.Y.), 323, 2756, (2008)
[49] Carpinter, A.; Sapora, A., ZAMM Z. angew. math. mech., 90, 203, (2010)
[50] Carpinteri, A.; Cornetti, P., Chaos solitons fract., 13, 85, (2002)
[51] Carpinteri, A.; Cornetti, P.; Kolwankar, K.M., Chaos solitons fract., 21, 623, (2004)
[52] El Naschie, M.S., Chaos solitons fract., 25, 531, (2005)
[53] El Naschie, M.S., Chaos solitons fract., 30, 579, (2006)
[54] Liang, Y.S.; Su, W.Y., Chaos solitons fract., 34, 682, (2007)
[55] West, B.J.; Bologna, M.; Grigolini, P., Physics of fractal operators, (2003), Springer-Verlag New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.