×

On the asymptotics of some difference equations. (English) Zbl 1252.39007

In the first part of the paper, the authors prove two theorems regarding a comparison of certain solutions to the equations \[ \begin{aligned} y_n &=\frac{f(y_{n-1},\dots,y_{n-k})}{g(y_{n-1},\dots,y_{n-k})}, \\ x_n &=(1-\varepsilon)f(x_{n-1},\dots,x_{n-k}),\\ z_n &=(1+\varepsilon)f(z_{n-1},\dots,z_{n-k}),\end{aligned} \] where \(f,g:\mathbb{R}_+^k\to\mathbb{R}_+\) with \(f\) being nondecreasing in all arguments, and \(\varepsilon\in(0,1).\) Then, in order to apply these theorems, some stability results are recalled and proved. The final part is devoted to applications of these results in examination of some concrete difference equations, for example, \[ y_n=\frac{y_{n-1}y_{n-2}\cdots y_{n-2m}}{g(y_{n-1}+1,y_{n-2}+1,\dots,y_{n-2m}+1)}. \]
Reviewer: Pavel Rehak (Brno)

MSC:

39A20 Multiplicative and other generalized difference equations
39A22 Growth, boundedness, comparison of solutions to difference equations
39A30 Stability theory for difference equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berg L., Asymptotische Darstellungen und Entwicklungen (1968) · Zbl 0165.36901
[2] Berg L., Z. Anal. Anwendungen 21 (4) pp 1061– (2002) · Zbl 1030.39006
[3] DOI: 10.1080/10236190310001625280 · Zbl 1056.39003
[4] DOI: 10.1080/10236190701503041 · Zbl 1138.39003
[5] DOI: 10.1080/10236190701754891 · Zbl 1156.39003
[6] DOI: 10.1080/10236190903203820 · Zbl 1220.39011
[7] Gibbons C.H., Math. Sci. Res. Hot-Line 4 (2) pp 1– (2000)
[8] Gutnik L., Discrete Dyn. Nat. Soc.
[9] DOI: 10.1016/j.amc.2009.05.044 · Zbl 1178.39012
[10] DOI: 10.1016/S0362-546X(01)00578-8 · Zbl 1042.39507
[11] DOI: 10.1016/S0898-1221(01)00184-5 · Zbl 0998.39005
[12] DOI: 10.1006/jmaa.1999.6384 · Zbl 0933.37016
[13] Kulenović M., Dynamics of Second Order Rational Difference Equations (2002) · Zbl 0981.39011
[14] DOI: 10.1016/j.aml.2006.01.001 · Zbl 1176.39016
[15] Stević S., Taiwanese J. Math. 6 (3) pp 405– (2002)
[16] Stević S., Discrete Dyn. Nat. Soc.
[17] DOI: 10.1016/j.jmaa.2005.04.077 · Zbl 1090.39009
[18] Stević S., Discrete Dyn. Nat. Soc.
[19] DOI: 10.1016/j.aml.2005.05.014 · Zbl 1095.39010
[20] Stević S., Discrete Dyn. Nat. Soc.
[21] Stević S., Discrete Dyn. Nat. Soc.
[22] DOI: 10.1016/j.aml.2006.03.002 · Zbl 1131.39009
[23] Stević S., Mat. Zametki 84 (5) pp 772– (2008)
[24] DOI: 10.1016/j.amc.2010.01.029 · Zbl 1193.39008
[25] DOI: 10.1080/10236190512331319343 · Zbl 1082.39009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.