zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Common fixed point theorem of two mappings satisfying a generalized weak contractive condition. (English) Zbl 1252.47050
Summary: Existence of common fixed point for two mappings which satisfy a generalized weak contractive condition is established. As a consequence, a common fixed point result for mappings satisfying a contractive condition of integral type is obtained. Our results generalize, extend and unify several well-known comparable results in literature.

MSC:
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47H09Mappings defined by “shrinking” properties
WorldCat.org
Full Text: DOI
References:
[1] A. Branciari, “A fixed point theorem for mappings satisfying a general contractive condition of integral type,” International Journal of Mathematics and Mathematical Sciences, vol. 29, no. 9, pp. 531-536, 2002. · Zbl 0993.54040 · doi:10.1155/S0161171202007524 · http://www.hindawi.com/journals/ijmms/volume-29/S0161171202007524.html · eudml:49397
[2] F. A. Akgun and B. E. Rhoades, “Maps satisfying a Meir-Keeler type contractive conditions of integral type for which F(T)=F(Tn),” In press. · Zbl 1161.54024
[3] B. E. Rhoades and M. Abbas, “Maps satisfying generalized contractive conditions of integral type for which F(T)=F(Tn),” International Journal of Pure and Applied Mathematics, vol. 45, no. 2, pp. 225-231, 2008. · Zbl 1161.54024
[4] B. E. Rhoades, “Some theorems on weakly contractive maps,” Nonlinear Analysis: Theory, Methods & Applications, vol. 47, no. 4, pp. 2683-2693, 2001. · Zbl 1042.47521 · doi:10.1016/S0362-546X(01)00388-1
[5] B. E. Rhoades, “Two fixed-point theorems for mappings satisfying a general contractive condition of integral type,” International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 63, pp. 4007-4013, 2003. · Zbl 1052.47052 · doi:10.1155/S0161171203208024 · eudml:51081
[6] A. Aliouche, “A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type,” Journal of Mathematical Analysis and Applications, vol. 322, no. 2, pp. 796-802, 2006. · Zbl 1111.47046 · doi:10.1016/j.jmaa.2005.09.068
[7] P. Vijayaraju, B. E. Rhoades, and R. Mohanraj, “A fixed point theorem for a pair of maps satisfying a general contractive condition of integral type,” International Journal of Mathematics and Mathematical Sciences, vol. 2005, no. 15, pp. 2359-2364, 2005. · Zbl 1113.54027 · doi:10.1155/IJMMS.2005.2359 · eudml:53132
[8] G. S. Jeong and B. E. Rhoades, “Maps for which F(T)=F(Tn),” Fixed Point Theory, vol. 6, pp. 87-131, 2005.
[9] P. N. Dutta and B. S. Choudhury, “A generalisation of contraction principle in metric spaces,” Fixed Point Theory and Applications, vol. 2008, Article ID 406368, 8 pages, 2008. · Zbl 1177.54024 · doi:10.1155/2008/406368 · eudml:45412
[10] Ya. I. Alber and S. Guerre-Delabriere, “Principle of weakly contractive maps in Hilbert spaces,” in New Results in Operator Theory and Its Applications, I. Gohberg and Y. Lyubich, Eds., vol. 98 of Operator Theory: Advances and Applications, pp. 7-22, Birkhäuser, Basel, Switzerland, 1997. · Zbl 0897.47044
[11] S. Sessa, “On a weak commutativity condition of mappings in fixed point considerations,” Publications de l/Institut Mathématique, vol. 32, pp. 149-153, 1982. · Zbl 0523.54030
[12] G. Jungck, “Compatible mappings and common fixed points,” International Journal of Mathematics and Mathematical Sciences, vol. 9, no. 4, pp. 771-779, 1986. · Zbl 0613.54029 · doi:10.1155/S0161171286000935 · eudml:46151
[13] G. Jungck, “Common fixed points for noncontinuous nonself maps on nonmetric spaces,” Far East Journal of Mathematical Sciences, vol. 4, no. 2, pp. 199-215, 1996. · Zbl 0928.54043
[14] I. Beg and M. Abbas, “Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition,” Fixed Point Theory and Applications, vol. 2006, Article ID 74503, 7 pages, 2006. · Zbl 1133.54024 · doi:10.1155/FPTA/2006/74503 · eudml:53904
[15] M. S. Khan, M. Swaleh, and S. Sessa, “Fixed point theorems by altering distances between the points,” Bulletin of the Australian Mathematical Society, vol. 30, no. 1, pp. 1-9, 1984. · Zbl 0553.54023 · doi:10.1017/S0004972700001659
[16] M. Abbas and G. Jungck, “Common fixed point results for noncommuting mappings without continuity in cone metric spaces,” Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 416-420, 2008. · Zbl 1147.54022 · doi:10.1016/j.jmaa.2007.09.070
[17] D. W. Boyd and J. S. Wong, “On nonlinear contractions,” Proceedings of the American Mathematical Society, vol. 20, pp. 458-464, 1969. · Zbl 0175.44903 · doi:10.2307/2035677
[18] T. Suzuki, “Meir-Keeler contractions of integral type are still Meir-Keeler contractions,” International Journal of Mathematics and Mathematical Sciences, vol. 2007, Article ID 39281, 6 pages, 2007. · Zbl 1142.54019 · doi:10.1155/2007/39281 · eudml:54410
[19] A. Meir and E. Keeler, “A theorem on contraction mappings,” Journal of Mathematical Analysis and Applications, vol. 28, no. 2, pp. 326-329, 1969. · Zbl 0194.44904 · doi:10.1016/0022-247X(69)90031-6