The projectivization of conformal models of fibrations determined by the algebra of quaternions. (English) Zbl 1252.53023

The aim of the present paper is to study the principal bundles determined by the algebra of quaternions in the projective model. The projectivization of the conformal model of the Hopf fibration is considered as example.


53B20 Local Riemannian geometry
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
Full Text: EuDML


[1] Berger, M.: Geometry I. Springer, New York- Berlin-Heidelberg, 1987. · Zbl 0606.51001
[2] Jukl, M.: On homologies of Klingenberg projective spaces oven special commutative local rings. Publ. Math. Univ. Debrec. 55 (1999), 113-121. · Zbl 0965.51003
[3] Jukl, M., Snášel, V.: Projective equivalence of quadrics in Klingenberg projective spaces over a special local ring. Int. Electr. J. Geom. 2 (2009), 34-38. · Zbl 1202.51005
[4] Kuzmina, I. A., Shapukov, B. N.: Conformal and elliptic models of the Hopf fibration. Tr. geom. sem. Kazan. Univ. 24 (2003), 81-98. · Zbl 1438.57007
[5] Luonesto, P.: Clifford Algebras and Spinors. Cambridge Univ. Press, Cambridge, 1997.
[6] Norden, A. P.: Normalization theory and vector bundles. Tr. Geom. Semin. 9 (1976), 68-76) · Zbl 0466.53006
[7] Norden, A. P.: Spaces of Affine Connection. Nauka, Moscow, 1976. · Zbl 0925.53007
[8] Rozenfeld, B. A.: Higher-dimensional Spaces. Nauka, Moscow, 1966.
[9] Rozenfeld, B. A.: Geometry of Lie Groups. Kluwer, Dordrecht-Boston-London, 1997.
[10] Shapukov, B. N.: Connections on a differential fibred bundle. Tr. geom. sem. Kazan. Univ. 1 (1980), 97-109. · Zbl 0493.53025
[11] Shirokov, A. P.: Non-Euclidean Spaces. Kazan University, Kazan, 1997) · Zbl 0933.51011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.