Reduction of symmetries of Dirac structures. (English) Zbl 1252.53094

Summary: We consider a Dirac structure \(D\) on a manifold \(Q\) invariant under a proper action of a Lie group \(G\) on \(Q\). Our aim is to describe the structure of the orbit space \(D/G\) in terms of the structure of \(Q/G\).
If the action of \(G\) on \(Q\) is free, then \(Q\) is a left principal fibre bundle with structure group \(G\) and base manifold \(Q/G\). We denote by \({Q[\mathfrak{g}]}\) the adjoint bundle and by \({Q[\mathfrak{g}^{*}]}\) the coadjoint bundle of \(Q\). We show that, for a free and proper action, \(D/G\) is a maximal isotropic subbundle of the direct sum \({Q[\mathfrak{g}] \oplus Q[\mathfrak{g}^{*}] \oplus T(Q/G) \oplus T^{*}(Q/G)}\).
If the action of \(G\) on \(Q\) is proper but not free, then the orbit space \(Q/G\) is stratified. For each stratum of \(Q/G\), the restriction of \(D/G\) to the stratum can be described in the same way as for a free and proper action.


53D17 Poisson manifolds; Poisson groupoids and algebroids
70G45 Differential geometric methods (tensors, connections, symplectic, Poisson, contact, Riemannian, nonholonomic, etc.) for problems in mechanics
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics
57R55 Differentiable structures in differential topology
58A35 Stratified sets
Full Text: DOI


[1] Aronszajn N.: Subcartesian and subriemannian spaces. Notices Amer. Math. Soc. 14, 111 (1967)
[2] Bierstone E.: Lifting isotopies from orbit spaces. Topology 14, 245–252 (1975) · Zbl 0317.57015 · doi:10.1016/0040-9383(75)90005-1
[3] G. Blankenstein, Implicit Hamiltonian systems: Symmetry and interconnection. PhD thesis, University of Twente, The Netherlands, 2000.
[4] Blankenstein G., Ratiu T.: Singular reduction of implicit Hamiltonian systems. Rep. Math. Phys. 53, 211–260 (2004) · Zbl 1065.37040 · doi:10.1016/S0034-4877(04)90013-4
[5] Blankenstein G., van der Schaft A.J.: Symmetry and reduction in implicit generalized Hamiltonian systems. Rep. Math. Phys. 47, 57–100 (2001) · Zbl 0978.37046 · doi:10.1016/S0034-4877(01)90006-0
[6] Buchner K., Heller M., Multarzyński P., Sasin W.: Literature on differential spaces. Acta Cosmologica 19, 111–129 (1993)
[7] Bursztyn H., Cavalcanti G.R., Gualtieri M.: Reduction of Courant algebroids and generalized complex structures. Adv. Math. 211, 726–765 (2007) · Zbl 1115.53056 · doi:10.1016/j.aim.2006.09.008
[8] Courant T.J.: Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) · Zbl 0850.70212 · doi:10.1090/S0002-9947-1990-0998124-1
[9] T. Courant and A. Weinstein, Beyond Poisson structures. In: Seminaire sudrhodanien de geometrie VIII, Travaux en Cours 27, Hermann, Paris, 1988, 39–49.
[10] Cushman R.: Reduction, Brouwer’s Hamiltonian and the critical inclination. Celestial Mech. Dynam. Astronom. 31, 401–429 (1983) · Zbl 0559.70026 · doi:10.1007/BF01230294
[11] Cushman R.H., Bates L.M.: Global Aspects of Classical Integrable Systems. Birkhäuser, Basel (1997) · Zbl 0882.58023
[12] Dorfman I.: Dirac Structures and Integrability of Nonlinear Evolution Equations. John Wiley, Chichester (1993) · Zbl 0717.58026
[13] M. Jotz and T. S. Ratiu, Optimal Dirac reduction. arXiv:1008.2283v1, 2010. · Zbl 1275.37028
[14] Jotz M., Ratiu T., Śniatycki J.: Singular reduction of Dirac structures. Trans. Amer. Math. Soc. 363, 2967–3013 (2011) · Zbl 1385.70039 · doi:10.1090/S0002-9947-2011-05220-7
[15] Kobayashi S., Nomizu K.: Foundations of Differential Geometry Vol 1. John Wiley & Sons, New York (1963) · Zbl 0119.37502
[16] T. Lusala and J. Śniatycki, Stratified subcartesian spaces. Canad. Math. Bull., to appear. · Zbl 1237.58008
[17] Palais R.: On the existence of slices for actions of non-compact Lie groups. Ann. of Math. (2) 73, 295–323 (1961) · Zbl 0103.01802 · doi:10.2307/1970335
[18] Schwarz G.: Smooth functions invariant under the action of compact Lie groups. Topology 14, 63–68 (1975) · Zbl 0297.57015 · doi:10.1016/0040-9383(75)90036-1
[19] Sikorski R.: Wstęp do Geometrii Ró\.zniczkowej. PWN, Warszawa (1972)
[20] J. Śniatycki, Integral curves of derivations on locally semi-algebraic differential spaces. In: Dynamical Systems and Differential Equations (Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations, May 24–27, 2002, Wilmington, NC, USA), W. Feng, S. Hu and X. Lu (eds.), American Institute of Mathematical Sciences Press, Springfield MO. 2003, pp. 827–833. · Zbl 1086.53100
[21] Śniatycki J.: Orbits of families of vector fields on subcartesian spaces. Ann. Inst. Fourier (Grenoble) 53, 2257–2296 (2003) · Zbl 1048.53060 · doi:10.5802/aif.2006
[22] J. Śniatycki, Differential Geometry of Singular Spaces and Reduction of Symmetry. In preparation. · Zbl 1298.58002
[23] Yoshimura H., Marsden J.E.: Reduction of Dirac Structures and Hamilton- Pontryagin principle. Rep. Math. Phys. 60, 381–426 (2007) · Zbl 1141.53081 · doi:10.1016/S0034-4877(08)00004-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.