zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Alexandroff property and the preservation of strong uniform continuity. (English) Zbl 1252.54004
It is well known that the pointwise limit of a sequence of continuous functions need not be continuous. What precisely must be added to pointwise convergence to yield continuity of the limit was given by {\it P. S. Alexandroff} in [Einf├╝hrung in die Mengenlehre und die Theorie der reellen Funktionen. Berlin: VEB Deutscher Verlag der Wissenschaften (1956; Zbl 0070.04704)]. Recall that if $(X,d)$ and $(Y,\rho)$ are metric spaces and $(f_{n})_{n\in\mathbb{N}}$ is a sequence of functions from $X$ to $Y$, then the sequence $ (f_{n})_{n\in\mathbb{N}}$ has the Alexandroff property with respect to $f$ if for each $ \varepsilon >0$ and $n_{0}\in \mathbb{N}$ there exists a strictly increasing sequence $(n_{k})_{k\in\mathbb{N}}$ of integers such that $n_{1}>n_{0}$ and a countable open cover $\left\{ V_{k}:k\in\mathbb{N}\right\} $ of $X$ such that $\forall k\in \mathbb{N}$, $\forall x\in V_{k}$ we have $\rho \left( f(x),f_{n_{k}}(x)\right) <\varepsilon $. Alexandroff showed that if $(X,d)$ and $(Y,\rho)$ are metric spaces and $(f_{n})_{n\in\mathbb{N}}$ is a sequence of functions from $X$ to $Y$ that pointwise converges to $f$, then the Alexandroff property is equivalent to continuity of $f$. In fact this result is true without metrizability in the domain. In the paper under review some modifications of this classical property of Alexandroff are developed for nets of continuous functions that combined with a certain convergence yield continuity of the limits of continuous functions. For instance, in Theorem 4.11, which is the last theorem of this paper, the following equivalences are proved: Let $(X,\cal{T)}$ be a Hausdorff space and $(Y,\bold{T})$ be a Hausdorff uniform space. Suppose that $\cal{{B}}$ is a bornology on $ X$ with compact base, and let $\left( f_{\lambda }\right) _{\lambda \in \Lambda }$ be a net in $C(X,Y)$ $\cal{T}_{\cal{{B}}}$-convergent to $f:X\rightarrow Y$. The following conditions are equivalent: {\parindent=6mm \item{1.} $f\in C(X,Y)$; \item{2.} For each nonempty compact subset $C$ of $X$, $T_{0}\in \bold{T}$ and $ \lambda _{0}\in \Lambda $, there exists a finite set of indices $\left\{ \lambda _{1},\lambda _{2},\dots ,\lambda _{n}\right\} $ such that $\lambda _{j}\geqslant \lambda _{0}$, for $1\leqslant j\leqslant n$, and a neighborhood $U$ of $C$ such that $\forall x\in U$, $\exists j\in \left\{ 1,2,\dots ,n\right\} $ such that $\left( f(x),f_{\lambda _{j}}(x)\right) \in T$; \item{3.} $\left( f_{\lambda }\right) _{\lambda \in \Lambda }$ has the classical Alexandroff property with respect to $f$; \item{4.} $\left( f_{\lambda }\right) _{\lambda \in \Lambda }$ is $\cal{T}_{ \cal{{B}}}^{\square }$-convergent to $f$, where $\cal{T}_{ \cal{{B}}}^{\square }$ is the topology corresponding to the uniformity in $Y^{X}$ whose entourages basis consists of subsets of $ Y^{X}\times Y^{X}$ of the form $$\left[ B,T\right] ^{\square }:=\left\{ (f,g):\exists U\in \cal{T},\ B\subset U;\left( f(x),g(x)\right) \in T,x\in U\right\} $$ where $B$ runs over the bornology $\cal{{B}}$ and $T$ runs over $\bold{T}$. \par} In this paper the author develops the extension to the uniform space setting of the theory of strong uniform continuity and strong uniform convergence, which had been developed in the setting of metric spaces in the papers [{\it G. Beer} and {\it S. Levi}, J. Math. Anal. Appl. 350, No. 2, 568--589 (2009; Zbl 1161.54003)] and [{\it G. Beer} and {\it S. Levi}, Set-Valued Var. Anal. 18, No. 3--4, 251--275 (2010; Zbl 1236.54012)].

54A20Convergence in general topology
54C05Continuous maps
54C35Function spaces (general topology)
40A30Convergence and divergence of series and sequences of functions
54E15Uniform structures and generalizations
54C08Weak and generalized continuity
Full Text: Link