Aydi, Hassen; Abbas, Mujahid; Vetro, Calogero Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces. (English) Zbl 1252.54027 Topology Appl. 159, No. 14, 3234-3242 (2012). Summary: We introduce the concept of a partial Hausdorff metric. We initiate study of fixed point theory for multi-valued mappings on partial metric space using the partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. Moreover, we give a homotopy result as application of our main result. Cited in 9 ReviewsCited in 113 Documents MSC: 54H25 Fixed-point and coincidence theorems (topological aspects) 54E35 Metric spaces, metrizability 54C60 Set-valued maps in general topology Keywords:partial Hausdorff metric; multi-valued mappings; Nadler’s fixed point theorem PDF BibTeX XML Cite \textit{H. Aydi} et al., Topology Appl. 159, No. 14, 3234--3242 (2012; Zbl 1252.54027) Full Text: DOI References: [1] Abbas, M.; Nazir, T., Fixed point of generalized weakly contractive mappings in ordered partial metric spaces, Fixed Point Theory Appl., 2012, 1, 19 pp (2012) · Zbl 1281.54015 [2] Altun, I.; Simsek, H., Some fixed point theorems on dualistic partial metric spaces, J. Adv. Math. Stud., 1, 1-8 (2008) · Zbl 1172.54318 [3] Altun, I.; Sola, F.; Simsek, H., Generalized contractions on partial metric spaces, Topology Appl., 157, 2778-2785 (2010) · Zbl 1207.54052 [4] Bukatin, M. A.; Shorina, S. Yu., Partial metrics and co-continuous valuations, (Nivat, M.; etal., Foundations of Software Science and Computation Structure. Foundations of Software Science and Computation Structure, Lecture Notes in Comput. Sci., vol. 1378 (1998), Springer), 125-139 · Zbl 0945.06006 [5] Ćirić, L.j.; Samet, B.; Aydi, H.; Vetro, C., Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput., 218, 2398-2406 (2011) · Zbl 1244.54090 [6] Damjanovic, B.; Samet, B.; Vetro, C., Common fixed point theorems for multi-valued maps, Acta Math. Sci. Ser. B Engl. Ed., 32, 818-824 (2012) · Zbl 1265.54166 [7] Di Bari, C.; Vetro, P., Fixed points for weak \(φ\)-contractions on partial metric spaces, Int. J. Eng., Contemp. Math. Sci., 1, 1, 5-13 (2011) [8] Heckmann, R., Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures, 7, 71-83 (1999) · Zbl 0993.54029 [9] Matthews, S. G., Partial metric topology, (Proc. 8th Summer Conference on General Topology and Applications. Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci., vol. 728 (1994)), 183-197 · Zbl 0911.54025 [10] Paesano, D.; Vetro, P., Suzukiʼs type characterizations of completeness for partial metric spaces and fixed points for partially ordered metric spaces, Topology Appl., 159, 3, 911-920 (2012) · Zbl 1241.54035 [11] Romaguera, S., A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010), Article ID 493298, 6 pp · Zbl 1193.54047 [12] Romaguera, S.; Valero, O., A quantitative computational model for complete partial metric spaces via formal balls, Math. Structures Comput. Sci., 19, 541-563 (2009) · Zbl 1172.06003 [13] Schellekens, M. P., The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci., 315, 135-149 (2004) · Zbl 1052.54026 [14] Nadler, S. B., Multivalued contraction mappings, Pacific J. Math., 30, 475-488 (1969) · Zbl 0187.45002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.