Abraham, Romain; Delmas, Jean-François A continuum-tree-valued Markov process. (English) Zbl 1252.60072 Ann. Probab. 40, No. 3, 1167-1211 (2012). The authors present a construction of a Lévy continuum random tree (CRT) associated with a super-critical continuous state branching process by means of the exploration process and a Girsanov theorem. They also extend the pruning procedure to this super-critical case. Reviewer: Arnaud Durand (Paris) Cited in 6 ReviewsCited in 23 Documents MSC: 60J25 Continuous-time Markov processes on general state spaces 60G55 Point processes (e.g., Poisson, Cox, Hawkes processes) 60J80 Branching processes (Galton-Watson, birth-and-death, etc.) Keywords:continuum random tree; explosion time; pruning; tree-valued Markov process; continuous state branching process; exploration process PDFBibTeX XMLCite \textit{R. Abraham} and \textit{J.-F. Delmas}, Ann. Probab. 40, No. 3, 1167--1211 (2012; Zbl 1252.60072) Full Text: DOI arXiv Euclid References: [1] Abraham, R. and Delmas, J.-F. (2008). Fragmentation associated with Lévy processes using snake. Probab. Theory Related Fields 141 113-154. · Zbl 1142.60048 · doi:10.1007/s00440-007-0081-2 [2] Abraham, R. and Delmas, J.-F. (2009). Changing the branching mechanism of a continuous state branching process using immigration. Ann. Inst. Henri Poincaré Probab. Stat. 45 226-238. · Zbl 1171.60374 · doi:10.1214/07-AIHP165 [3] Abraham, R. and Delmas, J.-F. (2009). Williams’ decomposition of the Lévy continuum random tree and simultaneous extinction probability for populations with neutral mutations. Stochastic Process. Appl. 119 1124-1143. · Zbl 1162.60326 · doi:10.1016/j.spa.2008.06.001 [4] Abraham, R., Delmas, J. F. and He, H. (2010). Pruning Galton-Watson trees and tree-valued Markov processes. Preprint. Available at . · Zbl 1256.60028 [5] Abraham, R., Delmas, J.-F. and Voisin, G. (2010). Pruning a Lévy continuum random tree. Electron. J. Probab. 15 1429-1473. · Zbl 1231.60073 [6] Abraham, R. and Serlet, L. (2002). Poisson snake and fragmentation. Electron. J. Probab. 7 no. 17, 15 pp. (electronic). · Zbl 1015.60046 [7] Aldous, D. (1991). The continuum random tree. II. An overview. In Stochastic Analysis ( Durham , 1990). London Mathematical Society Lecture Note Series 167 23-70. Cambridge Univ. Press, Cambridge. · Zbl 0791.60008 [8] Aldous, D. (1991). The continuum random tree. I. Ann. Probab. 19 1-28. · Zbl 0722.60013 · doi:10.1214/aop/1176990534 [9] Aldous, D. (1993). The continuum random tree. III. Ann. Probab. 21 248-289. · Zbl 0791.60009 · doi:10.1214/aop/1176989404 [10] Aldous, D. and Pitman, J. (1998). The standard additive coalescent. Ann. Probab. 26 1703-1726. · Zbl 0936.60064 · doi:10.1214/aop/1022855879 [11] Aldous, D. and Pitman, J. (1998). Tree-valued Markov chains derived from Galton-Watson processes. Ann. Inst. Henri Poincaré Probab. Stat. 34 637-686. · Zbl 0917.60082 · doi:10.1016/S0246-0203(98)80003-4 [12] Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121 . Cambridge Univ. Press, Cambridge. · Zbl 0861.60003 [13] Bertoin, J. (2002). Self-similar fragmentations. Ann. Inst. Henri Poincaré Probab. Stat. 38 319-340. · Zbl 1002.60072 · doi:10.1016/S0246-0203(00)01073-6 [14] Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge Studies in Advanced Mathematics 102 . Cambridge Univ. Press, Cambridge. · Zbl 1107.60002 · doi:10.1017/CBO9780511617768 [15] Delmas, J. F. (2008). Height process for super-critical continuous state branching process. Markov Process. Related Fields 14 309-326. · Zbl 1149.60057 [16] Duquesne, T. and Le Gall, J.-F. (2002). Random trees, Lévy processes and spatial branching processes. Astérisque 281 vi+147. · Zbl 1037.60074 [17] Duquesne, T. and Le Gall, J.-F. (2005). Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 553-603. · Zbl 1070.60076 · doi:10.1007/s00440-004-0385-4 [18] Duquesne, T. and Winkel, M. (2007). Growth of Lévy trees. Probab. Theory Related Fields 139 313-371. · Zbl 1126.60068 · doi:10.1007/s00440-007-0064-3 [19] Jiřina, M. (1958). Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 (83) 292-313. · Zbl 0168.38602 [20] Lamperti, J. (1967). The limit of a sequence of branching processes. Z. Wahrsch. Verw. Gebiete 7 271-288. · Zbl 0154.42603 · doi:10.1007/BF01844446 [21] Le Gall, J.-F. (2006). Random real trees. Ann. Fac. Sci. Toulouse Math. (6) 15 35-62. · Zbl 1129.60047 · doi:10.5802/afst.1112 [22] Le Gall, J.-F. and Le Jan, Y. (1998). Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses. Ann. Probab. 26 1407-1432. · Zbl 0945.60090 · doi:10.1214/aop/1022855868 [23] Le Gall, J.-F. and Le Jan, Y. (1998). Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 213-252. · Zbl 0948.60071 · doi:10.1214/aop/1022855417 [24] Uribe Bravo, G. (2009). The falling apart of the tagged fragment and the asymptotic disintegration of the Brownian height fragmentation. Ann. Inst. Henri Poincaré Probab. Stat. 45 1130-1149. · Zbl 1208.60036 · doi:10.1214/08-AIHP304 [25] Voisin, G. (2012). Dislocation measure of the fragmentation of a general Lévy tree. ESAIM : P&S . This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.