zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Laplace variational iteration strategy for the solution of differential equations. (English) Zbl 1252.65128
Summary: The aim of this article is to introduce a novel Laplace variational numerical scheme, based on the variational iteration method and Laplace transform, for the solution of certain classes of linear and nonlinear differential equations. The strategy is outlined and then illustrated through a number of test examples. The results assert that this alternative approach yields accurate results, converges rapidly and handles impulse functions and the ones with discontinuities.

MSC:
65L10Boundary value problems for ODE (numerical methods)
34B15Nonlinear boundary value problems for ODE
34A25Analytical theory of ODE (series, transformations, transforms, operational calculus, etc.)
44A10Laplace transform
65L20Stability and convergence of numerical methods for ODE
WorldCat.org
Full Text: DOI
References:
[1] Deeba, E.; Khuri, S. A.: Nonlinear equations, Wiley encyclopedia of electrical and electronics engineering 14, 562-570 (1999)
[2] Biazar, J.; Ghazvini, H.: He’s variational iteration method for solving linear and non-linear systems of ordinary differential equations, Appl. math. Comput. 191, 287-297 (2007) · Zbl 1193.65144 · doi:10.1016/j.amc.2007.02.153
[3] He, J. H.: Variational iteration method for delay differential equations, Commun. nonlinear sci. Numer. simul. 2, No. 4, 235-236 (1997) · Zbl 0924.34063
[4] He, J. H.: Variational iteration method--a kind of non-linear analytical technique: some examples, Int. J. Nonlinear mech. 34, 699-708 (1999) · Zbl 05137891
[5] He, J. H.: Variational iteration method for autonomous ordinary differential systems, Appl. math. Comput. 114, 115-123 (2000) · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[6] He, J. H.; Wu, X. H.: Variational iteration method: new development and applications, Comput. math. Appl. 54, 881-894 (2007) · Zbl 1141.65372 · doi:10.1016/j.camwa.2006.12.083