×

zbMATH — the first resource for mathematics

Mixture of new ideal gases and the solution of the Gibbs and Einstein paradoxes. (English) Zbl 1252.82038
Summary: A new concept of ideal gas is presented (i.e., of gas for which no particle interaction is assumed). This concept is based on number theory in which phase transitions of the first kind occur for \(T \leqslant T_{\text{cr}}\) on the isotherms, rather than on the law \(PV = RT\). Formulas for a mixture of ideal gases that solve the Gibbs and Einstein paradoxes and also formulas for the transition to imperfect gases, which use the concept of Zeno line, are presented.

MSC:
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
82D05 Statistical mechanics of gases
82B03 Foundations of equilibrium statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. W. Mackey, The Mathematical Foundations of Quantum Mechanics (Benjamin, New York-Amsterdam, 1963). · Zbl 0114.44002
[2] L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon Press, Oxford-Edinburgh-New York, 1968). · Zbl 0655.76001
[3] V. P. Maslov, ”A Correction to the Maxwell Distribution and the Bose-Einstein-Type Distribution in Classical Physics,” Teoret. Mat. Fiz. 157(1), 149–153 (2008) [Theoret. and Math. Phys. 157 (1), 1491–1495 (2008)]. · Zbl 1157.82323
[4] V. P. Maslov, ”New Distribution Formulas for Classical Gas, Clusters, and Phase Transitions,” Teoret. Mat. Fiz. 157(2), 250–272 (2008) [Theoret. and Math. Phys. 157 (2), 1577–1594 (2008)]. · Zbl 1157.82324
[5] V. P. Maslov, ”Clustering of an Ideal Gas in Nanostructures as a Phenomenon of Bose Condensation Type in an Asymptotically Probabilistically Quantized Space,” Teoret. Mat. Fiz. 157(2), 468–469 (2008) [Theoret. and Math. Phys. 157 (3), 1760–1761 (2008)]. · Zbl 1157.82384
[6] V. P. Maslov, ”Transition to the Condensate State for Classical Gases and Clusterization,” Mat. Zametki 84(6), 851–873 (2008) [Math. Notes 84 (5–6), 795–813 (2008)]. · Zbl 1219.82081
[7] V. P. Maslov, ”Mathematical Conception of the Gas Theory,” arXiv:0812.4669 29 Dec 2008.
[8] V. P. Maslov, ”Thermodynamics of Fluids for Imperfect Gases with Lennard-Jones Interaction Potential: I,” Math. Notes 86(3–4), 522–529 (2009). · Zbl 1181.82065
[9] V. P. Maslov, ”Thermodynamics of Fluids for Imperfect Gases with Lennard-Jones Interaction Potential: II (the Law of Redestribution of Energies),” Math. Notes 86(5–6), 605–611 (2009). · Zbl 1262.82038
[10] V. P. Maslov, ”On Refinement of Several Physical Notions and Solution of the Problem of Fluids for Overcritical States,” Nanostructures. Mathematical Physics and Simulation 2(2), 81–111 (2009) [in Russian].
[11] V. P. Maslov, ”Comparison of the Supercritical States of Fluids for Imperfect Gases and for a Fractal Ideal Gas,” Math. Notes 87(3), 303–310 (2010). · Zbl 1196.82121
[12] V. P. Maslov, ”On an Ideal Gas Related to the Law of Corresponding States,” Russ. J. Math. Phys. 17(2), 240–250 (2010). · Zbl 1267.82123
[13] V. P. Maslov, ”Thermodynamic Equations of State with Three Defining Constants,” Math. Notes 87(5), 728–737 (2010). · Zbl 1277.82048
[14] V. P. Maslov, ”New Global Distributions in Number Theory and Their Applications,” Fixed Point Theory Appl. 8(1), 81–113 (2010). · Zbl 1205.11141
[15] V. P. Maslov, ”Correspondence Principle between T - {\(\rho\)} Diagram and Interaction Potentials and a Distribution of Bose-Einstein Type,” Math. Notes 88(1), 57–66 (2010). · Zbl 1230.82014
[16] V. P. Maslov, ”Solution of the Gibbs Paradox Using the Notion of Entropy as a Function of the Fractal Dimension,” Russ. J. Math. Phys. 17(3), 251–261 (2010). · Zbl 1259.11032
[17] V. P. Maslov, ”Zeno-Line, Binodal, T-Z Diagram and Clusters as a New Bose-Condensate Bases on New Global Distributions in Number Theory,” arXiv:1007.4182v3 [math-ph], 28 Dec 2010.
[18] V. P. Maslov, ”A New Approach to Phase Transitions, Thermodynamics, and Hydrodynamics,” Teoret. Mat. Fiz. 165(3), 543–567 (2010) [Theoret. and Math. Phys. 165 (3), 1699–1720 (2010)]. · Zbl 1252.82047
[19] V. P. Maslov, ”Estimates in Number Theory and Phase Transition to Superfluid State,” Math. Notes 88(4), 293–303 (2010).
[20] V. P. Maslov, ”New Critical Points for the Liquid Phase and the Construction of Thermodynamics Depending on the Interaction Potential,” Math. Notes 88(5), 723–731 (2010). · Zbl 1230.82019
[21] A. I. Burshtein, Molecular Physics (Nauka, Novosibirsk, 1986) [in Russian].
[22] V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Thermophysical Properties of Neon, Argon, Krypton, and Xenon (Izd-vo Standartov, Moscow, 1976; Hemisphere, Washington DC-New York-Berlin, 1988).
[23] E. M. Apfelbaum and V. S. Vorob’ev, ”Correspondence between the Critical and the Zeno-Line Parameters for Classical and Quantum Liquids,” J. Phys. Chem. B 113, 3521–3526 (2009).
[24] H. Poincaré, La Science et l’Hypothèse (Flammarion, Paris, 1903) [in: On Science (in Russian) (Nauka, Moscow, 1983)].
[25] P. Erdos, ”On Some Asymptotic Formulas in the Theory of Partitions,” Bull. Amer. Math. Soc. 52, 185–188 (1946). · Zbl 0061.07906
[26] V. P. Maslov, ”Mathematical Solution of the Gibbs Paradox,” Mat. Zametki 89(2), 272–284 (2011). · Zbl 1230.82020
[27] V. P. Maslov and V. E. Nazaikinskii, ”On the Distribution of Integer Random Variables Satisfying Two Linear Relations,” Mat. Zametki 84(1), 69–98 (2008) [Math. Notes 84 (1), 73–99 (2008)]. · Zbl 1219.60031
[28] I. A. Molotkov, ”Maslov Distribution and Formulas for the Entropy,” Russ. J. Math. Phys. 17(4), 476–485 (2010). · Zbl 1252.80001
[29] J. D. van der Waals and Ph. Konstamm, Lehrbuch der Thermostatik. Band. I-II (Verlag von J. A. Barth, Leipzig, 1927; ONTI, Moscow, 1936).
[30] A. M. Vershik, ”Statistical Mechanics of Combinatorial Partitions, and Their Limit Shapes,” Funktsional. Anal. i Prilozhen. 30(2), 19–39 (1996) [Funct. Anal. Appl. 30 (2), 90–105 (1996)]. · Zbl 0868.05004
[31] V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarny, Thermodynamic Properties of Air (Izd. Standartov, Moscow, 1978; Hemisphere Publishing Corp, New York, 1987).
[32] M. Dykman and L. Pryadko, Lectures of Theory of Dissipative Tunneling, http://www.pa.msu.edu/dykman/PHY972/instanton_lectures.pdf .
[33] V. P. Maslov, ”Global Exponential Asymptotic Behavior of Solutions of the Tunnel Equations and the Problem of Large Deviations,” Tr. Mat. Inst. Steklova. 163, 150–180 (1984). · Zbl 0567.35083
[34] V. P. Maslov, Perturbation Theory and Asymptotical Methods (Izd-vo NGU, Moscow, 1965) [Théorie des perturbations et méthodes asymptotiques (Dunod, Paris, 1972)].
[35] V. P. Maslov, ”Hypothetic {\(\lambda\)}-Point for Noble Gases,” Russ. J. Math. Phys. 17(4), 400–408 (2010). · Zbl 1251.35079
[36] V. P. Maslov, Asymptotic Methods and Perturbation Theory (Nauka, Moscow, 1988) [in Russian]. · Zbl 0653.35002
[37] N. E. Hart, Geometric Quantization in Action (D. Reidel Publ. Company, Dordrecht-Boston-London, 1983; Mir, Moscow, 1985).
[38] V. P. Maslov, Quantization of Thermodynamics and Ultrasecond Quantization (Inst. Kompyuternykh Issledovanii, Moscow, 2001) [in Russian].
[39] V. P. Maslov, ”On the Superfluidity of Classical Liquid in Nanotubes. I. Case of Even Number of Neutrons,” Russ. J. Math. Phys. 14(3), 304–318 (2007). · Zbl 1179.82168
[40] V. P. Maslov, ”On the Superfluidity of Classical Liquid in Nanotubes. II. Case of Odd Number of Neutrons,” Russ. J. Math. Phys. 14(4), 401–412 (2007). · Zbl 1179.82169
[41] V. P. Maslov, ”On the Superfluidity of Classical Liquid in Nanotubes. III,” Russ. J. Math. Phys. 15(1), 61–65 (2008).
[42] Mathematical Encyclopaedia, Vol. 1 (Izd-vo Sovetskaya Entsiklopediya, Moscow, 1977) [in Russian].
[43] I. E. Tamm, ”Zur Quantenmechanik des Rotators,” Z. für Phys. 37, 685–698 (1926). · JFM 52.0980.03
[44] E. Schrödinger, Statistical Thermodynamics (University Press, Cambridge, The Macmillan Company, New York, 1946; IL, Moscow, 1948), Chap. 8.
[45] B. M. Kedrov, Gibbs Paradox (Nauka, Moscow, 1969) [in Russian].
[46] S. D. Khaitun, The History of the Gibbs Paradox (KomKniga, Moscow, 2005) [in Russian].
[47] Ya. M. Gel’fer, V. L. Lyuboshits, and M. I. Podgoretskii, The Gibbs Paradox and Particle Identity in Quantum Mechanics (Nauka, Moscow, 1975) [in Russian].
[48] R. M. Noyes, ”Entropy of Mixing of Interconvertible Species: Some Reflection of the Gibbs Paradox,” Amer. J. Phys. 34(6), 1983–1985 (1961).
[49] A. Lande, Foundations of Quantum Theory. A Study in Continuity and Symmetry (Yale Univ. Press, New Haven, 1955).
[50] J. V. Barnet, ”Entropía de mezela y semejanza,” Acta Cient. Venezolana 15(4), 129–133 (1964).
[51] A. Einstein, ”Quantentheorie des einatomigen idealen Gases,” Königliche Preußische Akad. Wiss., Sitz.ber. XXII, 261–267 (1924).
[52] O. Costa de Beauregard, ”Time Symmetry and the Einstein Paradox,” in: Ontologie und Logik/Ontology and Logic (Proc. Internat. Colloq., Salzburg, 1976), (Duncker & Humblot, Berlin, 1979), pp. 59–78.
[53] V. P. Maslov and V. E. Nazaikinskii, ”On the Distribution of Integer Random Variables Related by a Certain Linear Inequality: I,” Mat. Zametki 83(2), 232–263 (2008) [Math. Notes 83 (2), 211–237 (2008)]. · Zbl 1150.82017
[54] E. Schrödinger, What is Life? The Physical Aspect of the Living Cell (Cambridge Univ. Press, Cambridge, 1944; Atomizdat, Moscow, 1972).
[55] V. P. Maslov, ”Liquefaction of a Gas Governed by the Microcanonical Distribution,” Teoret. Mat. Fiz. 160(2), 331–332 (2009) [Theoret. and Math. Phys. 160 (2), 1144–1145 (2009)]. · Zbl 1177.82015
[56] V. P. Maslov, ”Solution of the Gibbs paradox in the Framework of Classical Mechanics (Statistical Physics) and Crystallization of the Gas C60,” Mat. Zametki 83(5), 787–791 (2008) [Math. Notes 83 (5–6), 716–722 (2008)].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.