zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay. (English) Zbl 1252.93072
Summary: We investigate the adaptive Q-S synchronization of coupled chaotic (or hyper-chaotic) systems with stochastic perturbation, delay and unknown parameters. The sufficient conditions for achieving Q-S synchronization of two stochastic chaotic systems are derived based on the invariance principle of stochastic differential equation. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the stochastic Q-S synchronization of non-identical chaotic (or hyper-chaotic) systems is to be obtained. Finally, two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.

93C40Adaptive control systems
34H10Chaos control (ODE)
34K50Stochastic functional-differential equations
60H10Stochastic ordinary differential equations
Full Text: DOI
[1] G.R. Chen, Control and Synchronization of Chaos, a bibliography, Dept. Elect. Eng. Univ Houston, TX, 1997.
[2] Chen, G. R.; Dong, X.: On feedback control of chaotic continuous time systems, IEEE trans. Circ. syst. 40, 591-601 (1993) · Zbl 0800.93758 · doi:10.1109/81.244908
[3] Hirokazu, F.; Tomoji, Y.: Stability theory of synchronized motion in coupled-oscillator system, Prog. theor. Phys. 69, 32-47 (1983) · Zbl 1171.70306 · doi:10.1143/PTP.69.32
[4] Luo, Albert C. J.: A theory for synchronization of dynamical systems, Commun. nonlinear sci. Numer. simulat. 14, No. 5, 1901-1951 (2009) · Zbl 1221.37218 · doi:10.1016/j.cnsns.2008.07.002
[5] Pecora, Louis M.; Carroll, Thomas L.: Carroll synchronization in chaotic systems, Phys. rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019
[6] Epaminondas, R. J.; Edward, O.; Mark, H. H.: Transition to phase synchronization of chaos, Phys. rev. Lett. 80, 1642-1645 (1998)
[7] Michael, G. R.; Arkady, S. P.; Jurgen, K.: Phase synchronization of chaotic oscillators, Phys. rev. Lett. 76, 1804-1807 (1996)
[8] Michael, G. R.; Arkady, S. P.; Jurgen, K.: From phase to lag synchronization in coupled chaotic oscillators, Phys. rev. Lett. 78, 4193-4196 (1997)
[9] Nikolai, F. R.; Mikhail, M. S.; Lev, S. T.; Henry, D. I. A.: Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. rev. E 51, 980-994 (1995)
[10] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability and equivalence of unidirectionally coupled dynamical systems, Phys. rev. Lett. 76, 1816-1819 (1996)
[11] Saverio, M.; Giuseppe, G.: Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua’s circuit, Int. J. Bifurcat. chaos 9, 1425-1434 (1999) · Zbl 0956.93501 · doi:10.1142/S0218127499000973
[12] Chen, H. H.: Global synchronization of chaotic systems via linear balanced feedback control, Appl. math. Comput. 186, No. 1, 923-931 (2007) · Zbl 1113.93047 · doi:10.1016/j.amc.2006.08.017
[13] Huang, L.; Feng, R.; Wang, M.: Synchronization of chaotic systems via nonlinear control, Phys. lett. A 320, 271-275 (2004) · Zbl 1065.93028 · doi:10.1016/j.physleta.2003.11.027
[14] Huang, D. B.: Simple adaptive-feedback controller for identical chaos synchronization, Phy. rev. E 71, 037203 (2005)
[15] Agiza, H. N.; Yassen, M. T.: Synchronization of ro¨ssler and Chen chaotic dynamical systems using active control, Phy. let. A 278, No. 4, 191-197 (2001) · Zbl 0972.37019
[16] Tang, F.; Wang, L.: An adaptive active control for the modified Chua’s circuit, Phys. lett. A 346, No. 5-6, 342-346 (2005) · Zbl 1195.94105 · doi:10.1016/j.physleta.2005.07.079
[17] Zhang, Q.; Chen, S. H.; Hu, Y. M.: Synchronizing the noise-perturbed unified chaotic system by sliding mode control, Phys. A 371, No. 2, 317-324 (2006)
[18] Haeri, M.; Tavazoei, M. S.; Naseh, M. R.: Synchronization of uncertain chaotic systems using active sliding mode control, Chaos soliton. Fract. 33, No. 4, 1230-1239 (2007) · Zbl 1138.93045 · doi:10.1016/j.chaos.2006.01.076
[19] Cao, J. D.; Wang, Z. D.; Sun, Y. H.: Synchronization in an array of linearly stochastically coupled networks with time delays, Phys. A 385, No. 2, 718-728 (2007)
[20] Sun, Y. H.; Cao, J. D.; Wang, Z. D.: Exponential synchronization of stochastic perturbed chaotic delayed neural networks, Neurocomputing 70, No. 13 -- 15, 2477-2485 (2007)
[21] Xiao, Y. Z.; Xu, W.; Tang, S. F.; Li, X. C.: Adaptive complete synchronization of the noise-perturbed two bi-directionally coupled chaotic systems with time-delay and unknown parametric mismatch, Appl. math. Comput. 213, 538-547 (2009) · Zbl 1165.93321 · doi:10.1016/j.amc.2009.03.049
[22] Yan, Z. Y.: Chaos Q -- S synchronization between R ¨osler system and a new unified chaotic system, Phys. lett. A 334, No. 5 -- 6, 406-412 (2005) · Zbl 1123.37312
[23] Mao, X. R.: A note on the lasalle-type theorems for stochastic differential delay equations, J. math. Anal. appl. 2689, 125-142 (2002) · Zbl 0996.60064 · doi:10.1006/jmaa.2001.7803
[24] Ben-Israel, A.; Greville, T. N. E.: Generalized inverse: theory and applications, (1974) · Zbl 0305.15001
[25] Fang, B. R.; Zhou, J. D.; Li, Y. M.: Matrix theory, (2004)
[26] Li, Y. X.; Tang, W. K. S.; Chen, G. R.: Generating hyperchaos via state feedback control, internat, J. bifur. Chaos 10, 3367-3375 (2005)
[27] Kloeden, P. E.; Platen, E.: Numerical solution of stochastic differential equations, (1999) · Zbl 0752.60043
[28] Lorenz, E. N.: Deterministic non-periodic flows, J. atmos. Sci. 20, 130-141 (1963)
[29] Chen, A. M.; Lu, J. A.; Lü, J. H.; Yu, S. M.: Generating hyperchaotic Lü attractor via state feedback control, Phys. A 364, 103-110 (2006)