Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay. (English) Zbl 1252.93072

Summary: We investigate the adaptive Q-S synchronization of coupled chaotic (or hyper-chaotic) systems with stochastic perturbation, delay and unknown parameters. The sufficient conditions for achieving Q-S synchronization of two stochastic chaotic systems are derived based on the invariance principle of stochastic differential equation. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the stochastic Q-S synchronization of non-identical chaotic (or hyper-chaotic) systems is to be obtained. Finally, two illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.


93C40 Adaptive control/observation systems
34H10 Chaos control for problems involving ordinary differential equations
34K50 Stochastic functional-differential equations
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI


[1] G.R. Chen, Control and Synchronization of Chaos, a bibliography, Dept. Elect. Eng. Univ Houston, TX, 1997.; G.R. Chen, Control and Synchronization of Chaos, a bibliography, Dept. Elect. Eng. Univ Houston, TX, 1997.
[2] Chen, G. R.; Dong, X., On feedback control of chaotic continuous time systems, IEEE Trans. Circ. Syst., 40, 591-601 (1993) · Zbl 0800.93758
[3] Hirokazu, F.; Tomoji, Y., Stability theory of synchronized motion in coupled-oscillator system, Prog. Theor. Phys., 69, 32-47 (1983) · Zbl 1171.70306
[4] Luo, Albert C. J., A theory for synchronization of dynamical systems, Commun. Nonlinear Sci. Numer. Simulat., 14, 5, 1901-1951 (2009) · Zbl 1221.37218
[5] Pecora, Louis M.; Carroll, Thomas L., Carroll synchronization in chaotic systems, Phys. Rev. Lett., 64, 821-824 (1990) · Zbl 0938.37019
[6] Epaminondas, R. J.; Edward, O.; Mark, H. H., Transition to phase synchronization of chaos, Phys. Rev. Lett., 80, 1642-1645 (1998)
[7] Michael, G. R.; Arkady, S. P.; Jurgen, K., Phase synchronization of chaotic oscillators, Phys. Rev. Lett., 76, 1804-1807 (1996) · Zbl 0871.93043
[8] Michael, G. R.; Arkady, S. P.; Jurgen, K., From phase to lag synchronization in coupled chaotic oscillators, Phys. Rev. Lett., 78, 4193-4196 (1997)
[9] Nikolai, F. R.; Mikhail, M. S.; Lev, S. T.; Henry, D. I.A., Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51, 980-994 (1995)
[10] Kocarev, L.; Parlitz, U., Generalized synchronization, predictability and equivalence of unidirectionally coupled dynamical systems, Phys. Rev. Lett., 76, 1816-1819 (1996)
[11] Saverio, M.; Giuseppe, G., Controlling chaotic dynamics using backstepping design with application to the Lorenz system and Chua’s circuit, Int. J. Bifurcat. Chaos, 9, 1425-1434 (1999) · Zbl 0956.93501
[12] Chen, H. H., Global synchronization of chaotic systems via linear balanced feedback control, Appl. Math. Comput., 186, 1, 923-931 (2007) · Zbl 1113.93047
[13] Huang, L.; Feng, R.; Wang, M., Synchronization of chaotic systems via nonlinear control, Phys. Lett. A, 320, 271-275 (2004) · Zbl 1065.93028
[14] Huang, D. B., Simple adaptive-feedback controller for identical chaos synchronization, Phy. Rev. E, 71, 037203 (2005)
[15] Agiza, H. N.; Yassen, M. T., Synchronization of R \(\ddot{o}\) ssler and Chen chaotic dynamical systems using active control, Phy. Let. A, 278, 4, 191-197 (2001) · Zbl 0972.37019
[16] Tang, F.; Wang, L., An adaptive active control for the modified Chua’s circuit, Phys. Lett. A, 346, 5-6, 342-346 (2005) · Zbl 1195.94105
[17] Zhang, Q.; Chen, S. H.; Hu, Y. M., Synchronizing the noise-perturbed unified chaotic system by sliding mode control, Phys. A, 371, 2, 317-324 (2006)
[18] Haeri, M.; Tavazoei, M. S.; Naseh, M. R., Synchronization of uncertain chaotic systems using active sliding mode control, Chaos Soliton. Fract., 33, 4, 1230-1239 (2007) · Zbl 1138.93045
[19] Cao, J. D.; Wang, Z. D.; Sun, Y. H., Synchronization in an array of linearly stochastically coupled networks with time delays, Phys. A, 385, 2, 718-728 (2007)
[20] Sun, Y. H.; Cao, J. D.; Wang, Z. D., Exponential synchronization of stochastic perturbed chaotic delayed neural networks, Neurocomputing, 70, 13-15, 2477-2485 (2007)
[21] Xiao, Y. Z.; Xu, W.; Tang, S. F.; Li, X. C., Adaptive complete synchronization of the noise-perturbed two bi-directionally coupled chaotic systems with time-delay and unknown parametric mismatch, Appl. Math. Comput., 213, 538-547 (2009) · Zbl 1165.93321
[22] Yan, Z. Y., Chaos Q-S synchronization between R ¨osler system and a new unified chaotic system, Phys. Lett. A, 334, 5-6, 406-412 (2005) · Zbl 1123.37312
[23] Mao, X. R., A note on the LaSalle-type theorems for stochastic differential delay equations, J. Math. Anal. Appl., 2689, 125-142 (2002) · Zbl 0996.60064
[24] Ben-Israel, A.; Greville, T. N.E., Generalized Inverse: Theory and Applications (1974), John Wiley & Sons: John Wiley & Sons New York · Zbl 0305.15001
[25] Fang, B. R.; Zhou, J. D.; Li, Y. M., Matrix Theory (2004), Tsinghua Univ. Press: Tsinghua Univ. Press Beijing, (256-262)
[26] Li, Y. X.; Tang, W. K.S.; Chen, G. R., Generating hyperchaos via state feedback control, Internat, J. Bifur. Chaos, 10, 3367-3375 (2005)
[27] Kloeden, P. E.; Platen, E., Numerical Solution of Stochastic Differential Equations (1999), Springer: Springer Berlin · Zbl 0701.60054
[28] Lorenz, E. N., Deterministic non-periodic flows, J. Atmos. Sci., 20, 130-141 (1963) · Zbl 1417.37129
[29] Chen, A. M.; Lu, J. A.; Lü, J. H.; Yu, S. M., Generating hyperchaotic Lü attractor via state feedback control, Phys. A, 364, 103-110 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.