zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modified function projective synchronization between different dimension fractional-order chaotic systems. (English) Zbl 1253.34019
Summary: A modified function projective synchronization (MFPS) scheme for different dimension fractional-order chaotic systems is presented via fractional order derivative. The synchronization scheme, based on stability theory of nonlinear fractional-order systems, is theoretically rigorous. The numerical simulations demonstrate the validity and feasibility of the proposed method.

MSC:
34A08Fractional differential equations
WorldCat.org
Full Text: DOI
References:
[1] I. Podlubny, Fractional Differential Equations, vol. 198, Academic Press, San Diego, Calif, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[2] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2001. · Zbl 1111.93302 · doi:10.1142/9789812817747
[3] I. Grigorenko and E. Grigorenko, “Chaotic dynamics of the fractional Lorenz system,” Physical Review Letters, vol. 91, no. 3, pp. 34101-034104, 2003.
[4] X. J. Wu, J. Li, and G. R. Chen, “Chaos in the fractional order unified system and its synchronization,” Journal of the Franklin Institute, vol. 345, no. 4, pp. 392-401, 2008. · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003
[5] T. T. Hartley, C. F. Lorenzo, and H. K. Qammer, “Chaos in a fractional order Chua’s system,” IEEE Transactions on Circuits and Systems I, vol. 42, no. 8, pp. 485-490, 1995.
[6] Z. M. Ge and C. Y. Ou, “Chaos in a fractional order modified Duffing system,” Chaos, Solitons & Fractals, vol. 34, no. 2, pp. 262-291, 2007. · Zbl 1132.37324 · doi:10.1016/j.chaos.2005.11.059
[7] Y. G. Yu and H. X. Li, “The synchronization of fractional-order Rössler hyperchaotic systems,” Physica A, vol. 387, no. 5-6, pp. 1393-1403, 2008.
[8] A. Freihat and S. Momani, “Adaptation of differential transform method for the numeric-analytic solution of fractional-order Rössler chaotic and hyperchaotic systems,” Abstract and Applied Analysis, Article ID 934219, 13 pages, 2012. · Zbl 1237.37058 · doi:10.1155/2012/934219
[9] N. X. Quyen, V. V. Yem, and T. M. Hoang, “A chaotic pulse-time modulation method for digital communication,” Abstract and Applied Analysis, vol. 2012, Article ID 835304, 15 pages, 2012. · Zbl 1242.94003 · doi:10.1155/2012/835304
[10] D. Y. Chen, W. L. Zhao, X. Y. Ma, and R. F. Zhang, “Control and cynchronization of chaos in RCL-Shunted Josephson Junction with noise disturbance using only one controller term,” Abstract and Applied Analysis, vol. 2012, Article ID 378457, 14 pages, 2012. · Zbl 1246.34060 · doi:10.1155/2012/378457
[11] Y. Y. Hou, “Controlling chaos in permanent magnet synchronous motor control system via fuzzy guaranteed cost controller,” Abstract and Applied Analysis, vol. 2012, Article ID 650863, 10 pages, 2012. · Zbl 1246.93065 · doi:10.1155/2012/650863
[12] R. Mainieri and J. Rehacek, “Projective synchronization in the three-dimensional chaotic systems,” Physical Review Letters, vol. 82, no. 15, pp. 3042-3045, 1999.
[13] Y. Yu and H.-X. Li, “Adaptive generalized function projective synchronization of uncertain chaotic systems,” Nonlinear Analysis, vol. 11, no. 4, pp. 2456-2464, 2010. · Zbl 1202.34095 · doi:10.1016/j.nonrwa.2009.08.002
[14] Y. Chen, H. An, and Z. Li, “The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems,” Applied Mathematics and Computation, vol. 197, no. 1, pp. 96-110, 2008. · Zbl 1136.93410 · doi:10.1016/j.amc.2007.07.036
[15] H. An and Y. Chen, “The function cascade synchronization method and applications,” Communications in Nonlinear Science and Numerical Simulation, vol. 13, no. 10, pp. 2246-2255, 2008. · Zbl 1221.93124 · doi:10.1016/j.cnsns.2007.05.029
[16] S. Wang, Y. G. Yu, and M. Diao, “Hybrid projective synchronization of chaotic fractional order systems with different dimension,” Physica A, vol. 389, no. 21, pp. 4981-4988, 2010.
[17] L. Pan, W. Zhou, L. Zhou, and K. Sun, “Chaos synchronization between two different fractional-order hyperchaotic systems,” vol. 16, no. 6, pp. 2628-2640, 2011. · Zbl 1221.37220 · doi:10.1016/j.cnsns.2010.09.016
[18] X. Y. Wang and J. M. Song, “Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 8, pp. 3351-3357, 2009. · Zbl 1221.93091 · doi:10.1016/j.cnsns.2009.01.010
[19] R. Zhang and S. Yang, “Adaptive synchronization of fractional-order chaotic systems via a single driving variable,” Nonlinear Dynamics, vol. 66, no. 4, pp. 831-837, 2011. · Zbl 1242.93097 · doi:10.1007/s11071-011-0213-1
[20] R. X. Zhang and S. P. Yang, “Stabilization of fractional-order chaotic system via a single state adaptive-feedback controller,” Nonlinear Dynamic, vol. 68, no. 1-2, pp. 45-51, 2012. · Zbl 1243.93099
[21] D. Cafagna and G. Grassi, “Observer-based projective synchronization of fractional systems via a scalar signal: application to hyperchaotic Rössler systems,” Nonlinear Dynamic, vol. 68, no. 1-2, pp. 117-128, 2012. · Zbl 1243.93047
[22] M. S. Tavazoei and M. Haeri, “Chaos control via a simple fractional-order controller,” Physics Letters A, vol. 372, no. 6, pp. 798-807, 2008. · Zbl 1217.70022 · doi:10.1016/j.physleta.2007.08.040
[23] E. Ahmed, A. M. A. El-Sayed, and H. A. A. El-Saka, “Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models,” Journal of Mathematical Analysis and Applications, vol. 325, no. 1, pp. 542-553, 2007. · Zbl 1105.65122 · doi:10.1016/j.jmaa.2006.01.087
[24] Z. M. Odibat, “Adaptive feedback control and synchronization of non-identical chaotic fractional order systems,” Nonlinear Dynamics, vol. 60, no. 4, pp. 479-487, 2010. · Zbl 1194.93105 · doi:10.1007/s11071-009-9609-6
[25] Z. Odibat, “A note on phase synchronization in coupled chaotic fractional order systems,” Nonlinear Analysis, vol. 13, no. 2, pp. 779-789, 2012. · Zbl 1238.34121 · doi:10.1016/j.nonrwa.2011.08.016
[26] J. Lü, X. Yu, G. Chen, and D. Cheng, “Characterizing the synchronizability of small-world dynamical networks,” IEEE Transactions on Circuits and Systems I, vol. 51, no. 4, pp. 787-796, 2004. · doi:10.1109/TCSI.2004.823672
[27] J. Zhou, J.-a. Lu, and J. Lü, “Adaptive synchronization of an uncertain complex dynamical network,” IEEE Transactions on Automatic Control, vol. 51, no. 4, pp. 652-656, 2006. · doi:10.1109/TAC.2006.872760
[28] J. Lü and G. Chen, “A time-varying complex dynamical network model and its controlled synchronization criteria,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841-846, 2005. · doi:10.1109/TAC.2005.849233
[29] J. Lü and G. Chen, “Generating multiscroll chaotic attractors: theories, methods and applications,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 16, no. 4, pp. 775-858, 2006. · Zbl 1097.94038 · doi:10.1142/S0218127406015179
[30] J. H. Lü, S. M. Yu, H Leung, and G. R. Cheng, “Experimental verification of multidirectional multiscroll chaotic attractors,” IEEE Transactions on Circuits and Systems I, vol. 53, no. 1, pp. 149-165, 2006.
[31] J. Lü, F. Han, X. Yu, and G. Chen, “Generating 3-D multi-scroll chaotic attractors: a hysteresis series switching method,” Automatica, vol. 40, no. 10, pp. 1677-1687, 2004. · Zbl 1162.93353 · doi:10.1016/j.automatica.2004.06.001
[32] J. Lü and G. Chen, “A new chaotic attractor coined,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 12, no. 3, pp. 659-661, 2002. · Zbl 1063.34510 · doi:10.1142/S0218127402004620