zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Active sliding observer scheme based fractional chaos synchronization. (English) Zbl 1253.34056
Summary: A novel observer scheme is proposed for the synchronization of fractional-order chaotic systems. Our approach employs a combination of a classical sliding observer and an active observer, where the active observer serves to increase the attraction strength of the sliding surface. Using the theory of Lyapunov functions, synchronization of the fractional order response with the fractional-order drive system is achieved in both ideal and mismatched cases. By using fractional-order differentiation and integration, it is proved that state synchronization is established in a finite time. Numerical simulations are presented to verify the effectiveness of the proposed observer.

34H10Chaos control (ODE)
34A08Fractional differential equations
34C28Complex behavior, chaotic systems (ODE)
Full Text: DOI
[1] Zhou, T. S.; Li, C. P.: Synchronization in fractional-order differential systems, Physica D 212, 111-125 (2005) · Zbl 1094.34034 · doi:10.1016/j.physd.2005.09.012
[2] Kiani-B, A.; Fallahi, K.; Pariz, N.; Leung, H.: A chaotic secure communication scheme using fractional chaotic systems based on an extended fractional Kalman filter, Commun nonlinear sci numer simul 14, 863-879 (2009) · Zbl 1221.94049 · doi:10.1016/j.cnsns.2007.11.011
[3] Wang, X. Y.; He, Y. J.; Wang, M. J.: Chaos control of a fractional order modified coupled dynamos system, Nonlinear anal 71, 6126-6134 (2009) · Zbl 1187.34080 · doi:10.1016/j.na.2009.06.065
[4] Lei, S.; Yang, J. Y.; Xu, S. Y.: Chaos synchronization for a class of nonlinear oscillators with fractional order, Nonlinear anal 72, 2326-2336 (2010) · Zbl 1187.34066 · doi:10.1016/j.na.2009.10.033
[5] Mata-Machuca, J. L.; Martínez-Guerra, R.; Aguilar-López, R.: An exponential polynomial observer for synchronization of chaotic systems, Commun nonlinear sci numer simul 15, 4114-4130 (2010) · Zbl 1222.93040 · doi:10.1016/j.cnsns.2010.01.040
[6] Feki, M.: Observer-based exact synchronization of ideal and mismatched chaotic systems, Phys lett A 309, 53-60 (2003) · Zbl 1010.37016 · doi:10.1016/S0375-9601(03)00171-3
[7] Lin, D.; Wang, X.: Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation, Fuzzy sets syst 161, 2066-2080 (2010) · Zbl 1194.93065 · doi:10.1016/j.fss.2010.03.006
[8] Chen, M.; Zhou, D.; Shan, Y.: A sliding mode observer based secure communication scheme, Chaos solitons fract 25, 573-578 (2005) · Zbl 1125.94321 · doi:10.1016/j.chaos.2004.11.075
[9] Lin, J. S.; Yan, J. J.; Liao, T. L.: Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity, Chaos solitons fract 24, 371-381 (2005) · Zbl 1094.93512 · doi:10.1016/j.chaos.2004.09.042
[10] Yoo, W.; Ji, D.; Won, S.: Synchronization of two different non-autonomous chaotic systems using fuzzy disturbance observer, Phys lett A 374, 1354-1361 (2010) · Zbl 1236.34074
[11] Rodriguez, A.; De Leon, J.; Fridman, L.: Synchronization in reduced-order of chaotic systems via control approaches based on high-order sliding-mode observer, Chaos solitons fract 42, 3219-3233 (2009) · Zbl 1198.93184 · doi:10.1016/j.chaos.2009.04.055
[12] Oldham, K. B.; Spanier, J.: The fractional calculus, (1974) · Zbl 0292.26011
[13] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[14] Das, S.: Functional fractional calculus for system identification and controls, (2008) · Zbl 1154.26007
[15] Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.: Fractional order control of a coupled tank, Nonlinear dyn 61, 383-397 (2010) · Zbl 1204.93086 · doi:10.1007/s11071-010-9656-z
[16] Delavari H, Senejohnny DM, Fractional-order controllers for robot manipulator, In: Legnani G, Fassi I, editors. Robotics: state of the art and future trends, New York: Nova Science Publishers; 2012, pp. 187 -- 209. ISBN: 978-1-62100-403-5.
[17] Delavari, H.; Ghaderi, R.; Ranjbar, A.; Momani, S.: Fuzzy fractional order sliding mode controller for nonlinear systems, Commun nonlinear sci numer simul 15, 963-978 (2010) · Zbl 1221.93140 · doi:10.1016/j.cnsns.2009.05.025
[18] Efe, M. Ö.: Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm, IEEE trans syst man cybern part B: cybern 38, 1561-1570 (2008)
[19] Calderon, A. J.; Vinagre, B. M.; Feliu, V.: Fractional order control strategies for power electronic buck converters, Signal process 86, 2803-2819 (2006) · Zbl 1172.94377 · doi:10.1016/j.sigpro.2006.02.022
[20] Sierociuk, D.; Dzielinski, A.: Fractional Kalman filter algorithm for the states, parameters and order of fractional system estimation, Int J appl math comput sci 16, 129-140 (2006)
[21] B.M. Vinagre, C.A. Monje, A.J. Calderon, ”Fractional Order Systems and Fractional Order Control Actions,” 41st IEEE Int. Conf. on Decision and Control, Las Vegas, NV, pp.15-38, 2002.
[22] Matignon D,. d’Andera-Novel B. Observer Based Controllers for Fractional Differential Systems. In: International Conference. on Decision and Control, San Diego, CA, 1997. pp.4967 -- 4972.
[23] Podlubny, I.: Fractional-order systems and PI$\lambda d\mu $-controllers, IEEE trans autom control 44, 208-214 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[24] Li, H.; Luo, Y.; Chen, Y.: Fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments, IEEE trans control syst technol 18, 516-520 (2010)
[25] Li, Y.; Chen, Y. Q.; Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag -- Leffler stability, Comput math appl. 59, 1810-1821 (2010) · Zbl 1189.34015 · doi:10.1016/j.camwa.2009.08.019
[26] Sabatier, J.; Moze, M.; Farges, C.: LMI stability conditions for fractional order systems, Comput math appl. 59, 1594-1609 (2010) · Zbl 1189.34020 · doi:10.1016/j.camwa.2009.08.003
[27] Farges, C.; Moze, M.; Sabatier, J.: Pseudo state feedback stabilization of commensurate fractional order systems, Automatica 10, 1730-1734 (2010) · Zbl 1204.93094 · doi:10.1016/j.automatica.2010.06.038
[28] Farges C., Sabatier J., Moze M, Fractional order polytopic systems: robust stability and stabilisation, Advances in Difference Equations. 35 (2011). doi:10.1186/1687-1847-2011-35. · Zbl 1267.93132
[29] Tavazoei, M. S.; Haeri, M.: Advanced determination of active sliding mode controller parameters in synchronizing different chaotic systems, Chaos solitons fract 32, 583-591 (2007)
[30] Tavazoei, M. S.; Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller, Phys A 387, 57-70 (2008)
[31] Brunovský, P.: A classification of linear controllable systems, Kybernetika 6, 173-188 (1970) · Zbl 0199.48202
[32] Li, Y.; Chen, Y. Q.; Podlubny, I.: Mittagleffler stability of fractional order nonlinear dynamic systems, Automatica 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[33] Derivière, S.; Alaoui, M. A. Aziz: Principe d’invariance uniforme et estimation d’attracteurs étrange dans R3, 3eme colloque sur le chaos temporel et le chaos spatio-temporel, (2001)
[34] Faieghi, M. R.; Delavari, H.: Chaos in fractional-order Genesio -- Tesi system and its synchronization, Commun nonlinear sci numer simulat 17, 731-741 (2012) · Zbl 1239.93020
[35] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006) · Zbl 1092.45003
[36] Tavazoei, M. S.; Haeri, M.: Unreliability of frequencydomain approximation in recognizing chaos in fractionalorder systems, IET signal process. 4, 171-181 (2007)
[37] Shuqin, Z.: Monotone iterative method for initial value problem involving riemannliouville fractional derivatives, Nonlinear analysis. 71, 2087-2093 (2009) · Zbl 1172.26307 · doi:10.1016/j.na.2009.01.043
[38] Ladde, G. S.; Lakshmikantham, V.; Vatsala, A. S.: Monotone iterative techniques for nonlinear differential equations, (1985) · Zbl 0658.35003
[39] Ahmad, B.; Sivasundaram, S.: Existence results and monotone iterative technique for impulsive hybrid functional differential systems with anticipationand retardation, Appl math comput 197, 515-524 (2008) · Zbl 1142.34049 · doi:10.1016/j.amc.2007.07.065
[40] Shahiri, M.; Ghaderi, R.; Ranjbar, A.; Hosseinnia, S. H.; Momani, S.: Chaotic fractional-order coullet system: synchronization and control approach, Commun nonlinear sci numer simulat 15, 665-674 (2010) · Zbl 1221.37222 · doi:10.1016/j.cnsns.2009.05.054