zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An algorithm to automatically detect the Smale horseshoes. (English) Zbl 1253.37005
Summary: Smale horseshoes, curvilinear rectangles and their U-shaped images patterned on Smale’s famous example, provide a rigorous way to study chaos in dynamical systems. The paper is devoted to constructing them in two-dimensional diffeomorphisms with the existence of transversal homoclinic saddles. We first propose an algorithm to automatically construct “horizontal” and “vertical” sides of the curvilinear rectangle near to segments of the stable and of the unstable manifolds, respectively, and then apply it to four classical chaotic maps (the Duffing map, the Hénon map, the Ikeda map, and the Lozi map) to verify its effectiveness.

37-04Machine computation, programs (dynamical systems and ergodic theory)
37E30Homeomorphisms and diffeomorphisms of planes and surfaces
37D45Strange attractors, chaotic dynamics
37C29Homoclinic and heteroclinic orbits
Full Text: DOI