zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the definitions of nabla fractional operators. (English) Zbl 1253.39004
Summary: We show that two recent definitions of discrete nabla fractional sum operators are related. Obtaining such a relation between two operators allows one to prove basic properties of the one operator by using the known properties of the other. We illustrate this idea with proving power rule and commutative property of discrete fractional sum operators. We also introduce and prove summation by parts formulas for the right and left fractional sum and difference operators, where we employ the Riemann-Liouville definition of the fractional difference. We formalize initial value problems for nonlinear fractional difference equations as an application of our findings. An alternative definition for the nabla right fractional difference operator is also introduced.

39A12Discrete version of topics in analysis
26A33Fractional derivatives and integrals (real functions)
Full Text: DOI
[1] H. L. Gray and N. F. Zhang, “On a new definition of the fractional difference,” Mathematics of Computation, vol. 50, no. 182, pp. 513-529, 1988. · Zbl 0648.39002 · doi:10.2307/2008620
[2] F. M. Atıcı and P. W. Eloe, “Discrete fractional calculus with the nabla operator,” Electronic Journal of Qualitative Theory of Differential Equations, no. 3, pp. 1-12, 2009. · Zbl 1189.39004 · emis:journals/EJQTDE/sped1/103.pdf · eudml:227223
[3] K. S. Miller and B. Ross, “Fractional difference calculus,” in Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, pp. 139-152, Nihon University, Koriyama, Japan, 1989. · Zbl 0693.39002
[4] T. Abdeljawad, “On Riemann and Caputo fractional differences,” Computers & Mathematics with Applications, vol. 62, no. 3, pp. 1602-1611, 2011. · Zbl 1228.26008 · doi:10.1016/j.camwa.2011.03.036
[5] T. Abdeljawad and D. Baleanu, “Fractional differences and integration by parts,” Journal of Computational Analysis and Applications, vol. 13, no. 3, pp. 574-582, 2011. · Zbl 1225.39008
[6] F. Jarad, T. Abdeljawad, D. Baleanu, and K. Bi\ccen, “On the stability of some discrete fractional nonautonomous systems,” Abstract and Applied Analysis, vol. 2012, Article ID 476581, 9 pages, 2012. · Zbl 1235.93206 · doi:10.1155/2012/476581
[7] J. Fahd, T. Abdeljawad, E. Gündo\ugdu, and D. Baleanu, “On the Mittag-Leffler stability of q-fractional nonlinear dynamical systems,” Proceedings of the Romanian Academy, vol. 12, no. 4, pp. 309-314, 2011.
[8] T. Abdeljawad and D. Baleanu, “Caputo q-fractional initial value problems and a q-analogue Mittag-Leffler function,” Communications in Nonlinear Science and Numerical Simulation, vol. 16, no. 12, pp. 4682-4688, 2011. · Zbl 1231.26006 · doi:10.1016/j.cnsns.2011.01.026
[9] F. M. Atici and P. W. Eloe, “A transform method in discrete fractional calculus,” International Journal of Difference Equations, vol. 2, no. 2, pp. 165-176, 2007.
[10] F. M. Atici and P. W. Eloe, “Initial value problems in discrete fractional calculus,” Proceedings of the American Mathematical Society, vol. 137, no. 3, pp. 981-989, 2009. · Zbl 1166.39005 · doi:10.1090/S0002-9939-08-09626-3
[11] F. M. Atıcı and S. \cSengül, “Modeling with fractional difference equations,” Journal of Mathematical Analysis and Applications, vol. 369, no. 1, pp. 1-9, 2010. · Zbl 1204.39004 · doi:10.1016/j.jmaa.2010.02.009
[12] F. M. Atici and P. W. Eloe, “Linear systems of fractional nabla difference equations,” The Rocky Mountain Journal of Mathematics, vol. 41, no. 2, pp. 353-370, 2011. · Zbl 1218.39003 · doi:10.1216/RMJ-2011-41-2-353
[13] F. M. Atıcı and P. W. Eloe, “Gronwall’s inequality on discrete fractional calculus,” Computer and Mathematics with Applications. In press. · Zbl 1268.26029
[14] R. A. C. Ferreira and D. F. M. Torres, “Fractional h-difference equations arising from the calculus of variations,” Applicable Analysis and Discrete Mathematics, vol. 5, no. 1, pp. 110-121, 2011. · Zbl 1289.39007 · doi:10.2298/AADM110131002F
[15] C. S. Goodrich, “Existence of a positive solution to a class of fractional differential equations,” Applied Mathematics Letters, vol. 23, no. 9, pp. 1050-1055, 2010. · Zbl 1204.34007 · doi:10.1016/j.aml.2010.04.035
[16] Nuno R. O. Bastos, Rui A. C. Ferreira, and Delfim F. M. Torres, “Discrete-time fractional variational problems,” Signal Processing, vol. 91, no. 3, pp. 513-524, 2011. · Zbl 1203.94022 · doi:10.1016/j.sigpro.2010.05.001
[17] G. A. Anastassiou, “Nabla discrete fractional calculus and nabla inequalities,” Mathematical and Computer Modelling, vol. 51, no. 5-6, pp. 562-571, 2010. · Zbl 1190.26001 · doi:10.1016/j.mcm.2009.11.006
[18] K. Ahrendt, L. Castle, M. Holm, and K. Yochman, “Laplace transforms for the nabla -difference operator and a fractional variation of parameters formula,” Communications in Applied Analysis. In press. · Zbl 1277.39007
[19] J. Hein, Z. McCarthy, N. Gaswick, B. McKain, and K. Speer, “Laplace transforms for the nabla-difference operator,” Panamerican Mathematical Journal, vol. 21, no. 3, pp. 79-97, 2011. · Zbl 1234.26024
[20] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[21] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[22] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, Switzerland, 1993. · Zbl 0818.26003
[23] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Application of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, 2006. · Zbl 1092.45003