zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Theorems for Boyd-Wong-type contractions in ordered metric spaces. (English) Zbl 1253.54036
Summary: We give some fixed point results using an ICS mapping and involving Boyd-Wong-type contractions in partially ordered metric spaces. Our results generalize, extend, and unify several well-known comparable theorems in the literature. Also, we present some examples to support our results.
MSC:
54H25Fixed-point and coincidence theorems in topological spaces
WorldCat.org
Full Text: DOI
References:
[1] S. Banach, “Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales,” Fundamenta Mathematicae, vol. 3, pp. 133-181, 1922. · Zbl 48.0201.01
[2] D. S. Jaggi, “Some unique fixed point theorems,” Indian Journal of Pure and Applied Mathematics, vol. 8, no. 2, pp. 223-230, 1977. · Zbl 0379.54015
[3] A. C. M. Ran and M. C. B. Reurings, “A fixed point theorem in partially ordered sets and some applications to matrix equations,” Proceedings of the American Mathematical Society, vol. 132, no. 5, pp. 1435-1443, 2004. · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4
[4] J. J. Nieto and R. Rodríguez-López, “Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations,” Acta Mathematica Sinica, vol. 23, no. 12, pp. 2205-2212, 2007. · Zbl 1140.47045 · doi:10.1007/s10114-005-0769-0
[5] R. P. Agarwal, M. A. El-Gebeily, and D. O’Regan, “Generalized contractions in partially ordered metric spaces,” Applicable Analysis, vol. 87, no. 1, pp. 109-116, 2008. · Zbl 1140.47042 · doi:10.1080/00036810701556151
[6] A. Amini-Harandi and H. Emami, “A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 72, no. 5, pp. 2238-2242, 2010. · Zbl 1197.54054 · doi:10.1016/j.na.2009.10.023
[7] I. Altun and H. Simsek, “Some fixed point theorems on ordered metric spaces and application,” Fixed Point Theory and Applications, vol. 2010, Article ID 621469, 17 pages, 2010. · Zbl 1197.54053 · doi:10.1155/2010/621469 · eudml:226094
[8] H. Aydi, “Coincidence and common fixed point results for contraction type maps in partially ordered metric spaces,” International Journal of Mathematical Analysis, vol. 5, no. 13, pp. 631-642, 2011. · Zbl 1238.54019 · http://www.m-hikari.com/ijma/ijma-2011/ijma-13-16-2011/index.html
[9] H. Aydi, “Some fixed point results in ordered partial metric spaces,” Journal of Nonlinear Science and its Applications, vol. 4, no. 3, pp. 210-217, 2011. · Zbl 06331331
[10] H. Aydi, “Fixed point results for weakly contractive mappings in ordered partial metric spaces,” Journal of Advanced Mathematical Studies, vol. 4, no. 2, pp. 1-12, 2011. · Zbl 1234.54051
[11] H. Aydi, “Fixed point theorems for generalized weakly contractive condition in ordered partial metric spaces,” Journal of Nonlinear Analysis and Optimization: Theory and Applications, vol. 2, no. 2, pp. 33-48, 2011.
[12] H. Aydi, “Common fixed point results for mappings satisfying (\Psi , \varphi )-weak contractions in ordered partial metric spaces,” International JMathematics and Statistics, vol. 12, no. 2, pp. 53-64, 2012. · Zbl 1306.54041
[13] H. Aydi, H. K. Nashine, B. Samet, and H. Yazidi, “Coincidence and common fixed point results in partially ordered cone metric spaces and applications to integral equations,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 17, pp. 6814-6825, 2011. · Zbl 1226.54043 · doi:10.1016/j.na.2011.07.006
[14] L. Gholizadeh, R. Saadati, W. Shatanawi, and S. M. Vaezpour, “Contractive mapping in generalized, ordered metric spaces with application in integral equations,” Mathematical Problems in Engineering, vol. 2011, Article ID 380784, 14 pages, 2011. · Zbl 1235.54034 · doi:10.1155/2011/380784
[15] T. Gnana Bhaskar and V. Lakshmikantham, “Fixed point theorems in partially ordered metric spaces and applications,” Nonlinear Analysis. Theory, Methods & Applications, vol. 65, no. 7, pp. 1379-1393, 2006. · Zbl 1106.47047 · doi:10.1016/j.na.2005.10.017
[16] J. Harjani and K. Sadarangani, “Fixed point theorems for weakly contractive mappings in partially ordered sets,” Nonlinear Analysis. Theory, Methods & Applications, vol. 71, no. 7-8, pp. 3403-3410, 2009. · Zbl 1221.54058 · doi:10.1016/j.na.2009.01.240
[17] J. Harjani, B. López, and K. Sadarangani, “A fixed point theorem for mappings satisfying a contractive condition of rational type on a partially ordered metric space,” Abstract and Applied Analysis, vol. 2010, Article ID 190701, 8 pages, 2010. · Zbl 1203.54041 · doi:10.1155/2010/190701 · eudml:224499
[18] E. Karapinar, “Weak \varphi -contraction on partial metric spaces and existence of fixed points in partially ordered sets,” Mathematica Æ terna, vol. 1, no. 3-4, pp. 237-244, 2011. · Zbl 1291.54060
[19] M. S. Khan, M. Swaleh, and S. Sessa, “Fixed point theorems by altering distances between the points,” Bulletin of the Australian Mathematical Society, vol. 30, no. 1, pp. 1-9, 1984. · Zbl 0553.54023 · doi:10.1017/S0004972700001659
[20] N. V. Luong, N. X. Thuan, and T. T. THai, “Coupled fixed point theorems in partially ordered metric spaces,” Bulletin of Mathematical Analysis and Applications, vol. 3, no. 3, pp. 129-140, 2011.
[21] N. V. Luong and N. X. Thuan, “Fixed point theorem for generalized weak contractions satisfying rational expressions in ordered metric spaces,” Fixed Point Theory and Applications, vol. 2011, article 46, 2011. · Zbl 1315.54040
[22] S. Moradi and M. Omid, “A fixed-point theorem for integral type inequality depending on another function,” International Journal of Mathematical Analysis, vol. 4, no. 29-32, pp. 1491-1499, 2010. · Zbl 1216.54015 · http://www.m-hikari.com/ijma/ijma-2010/ijma-29-32-2010/index.html
[23] J. J. Nieto and R. Rodríguez-López, “Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations,” A Journal on the Theory of Ordered Sets and its Applications, vol. 22, no. 3, p. 223-239, 2005. · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[24] D. O’Regan and A. Petru\csel, “Fixed point theorems for generalized contractions in ordered metric spaces,” Journal of Mathematical Analysis and Applications, vol. 341, no. 2, pp. 1241-1252, 2008. · Zbl 1142.47033 · doi:10.1016/j.jmaa.2007.11.026
[25] A. Petru\csel and I. A. Rus, “Fixed point theorems in ordered L-spaces,” Proceedings of the American Mathematical Society, vol. 134, no. 2, pp. 411-418, 2006. · Zbl 1086.47026 · doi:10.1090/S0002-9939-05-07982-7
[26] W. Shatanawi, Z. Mustafa, and N. Tahat, “Some coincidence point theorems for nonlinear contraction in ordered metric spaces,” Fixed Point Theory and Applications, vol. 2011, article 68, 2011. · Zbl 1271.54088
[27] W. Shatanawi and B. Samet, “On (\psi ,\varphi )-weakly contractive condition in partially ordered metric spaces,” Computers & Mathematics with Applications, vol. 62, no. 8, pp. 3204-3214, 2011. · Zbl 1232.54041 · doi:10.1016/j.camwa.2011.08.033
[28] W. Shatanawi and B. Samet, “Coupled fixed point theorems for mixed monotone mappings in ordered ordered partial metric spaces,” Mathematical and Computer Modelling. In press. · Zbl 1255.54027
[29] W. Shatanawi, “Fixed point theorems for nonlinear weakly C-contractive mappings in metric spaces,” Mathematical and Computer Modelling, vol. 54, no. 11-12, pp. 2816-2826, 2011. · Zbl 1235.54054 · doi:10.1016/j.mcm.2011.06.069
[30] K. P. Chi, “On a fixed point theorem for certain class of maps satisfying a contractive condition depended on an another function,” Lobachevskii Journal of Mathematics, vol. 30, no. 4, pp. 289-291, 2009. · Zbl 1227.54045 · doi:10.1134/S1995080209040076
[31] D. W. Boyd and J. S. W. Wong, “On nonlinear contractions,” Proceedings of the American Mathematical Society, vol. 20, pp. 458-464, 1969. · Zbl 0175.44903 · doi:10.2307/2035677
[32] J. Jachymski, “Equivalent conditions for generalized contractions on (ordered) metric spaces,” Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no. 3, pp. 768-774, 2011. · Zbl 1201.54034 · doi:10.1016/j.na.2010.09.025