×

Finite element solutions for the space fractional diffusion equation with a nonlinear source term. (English) Zbl 1253.65148

Summary: We consider finite element Galerkin solutions for the space fractional diffusion equation with a nonlinear source term. Existence, stability, and order of convergence of approximate solutions for the backward Euler fully discrete scheme have been discussed as well as for the semidiscrete scheme. The analytical convergent orders are obtained as \(O(k + h^{\tilde{\gamma}})\), where \(\tilde{\gamma}\) is a constant depending on the order of fractional derivative. Numerical computations are presented, which confirm the theoretical results when the equation has a linear source term. When the equation has a nonlinear source term, numerical results show that the diffusivity depends on the order of fractional derivative as we expect.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
35K57 Reaction-diffusion equations

Software:

FODE

References:

[1] K. Diethelm and N. J. Ford, “Analysis of fractional differential equations,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229-248, 2002. · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[2] A. A. Kilbas and J. J. Trujillo, “Differential equations of fractional order: methods, results and problems. I,” Applicable Analysis, vol. 78, no. 1-2, pp. 153-192, 2001. · Zbl 1031.34002 · doi:10.1080/00036810108840931
[3] A. A. Kilbas and J. J. Trujillo, “Differential equations of fractional order: methods, results and problems. II,” Applicable Analysis, vol. 81, no. 2, pp. 435-493, 2002. · Zbl 1033.34007 · doi:10.1080/0003681021000022032
[4] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports, vol. 339, no. 1, pp. 1-77, 2000. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[5] R. Metzler and J. Klafter, “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics,” Journal of Physics A, vol. 37, no. 31, pp. R161-R208, 2004. · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[6] K. B. Oldham and J. Spanier, The Fractional Calculus, Dover Publications, New York, NY, USA, 2002. · Zbl 0428.26004
[7] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[8] B. Baeumer, M. Kovács, and M. M. Meerschaert, “Numerical solutions for fractional reaction-diffusion equations,” Computers & Mathematics with Applications, vol. 55, no. 10, pp. 2212-2226, 2008. · Zbl 1142.65422 · doi:10.1016/j.camwa.2007.11.012
[9] W. Deng, “Finite element method for the space and time fractional Fokker-Planck equation,” SIAM Journal on Numerical Analysis, vol. 47, no. 1, pp. 204-226, 2008. · Zbl 1416.65344 · doi:10.1137/080714130
[10] Z. Q. Deng, V. P. Singh, and L. Bengtsson, “Numerical solution of fractional advection-dispersion equation,” Journal of Hydraulic Engineering, vol. 130, no. 5, pp. 422-431, 2004. · doi:10.1061/(ASCE)0733-9429(2004)130:5(422)
[11] Y. Lin and C. Xu, “Finite difference/spectral approximations for the time-fractional diffusion equation,” Journal of Computational Physics, vol. 225, no. 2, pp. 1533-1552, 2007. · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[12] F. Liu, A. Anh, and I. Turner, “Numerical solution of the space fractional Fokker-Planck equation,” Journal of Computational and Applied Mathematics, vol. 166, pp. 209-219, 2004. · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[13] B. Baeumer, M. Kovács, and M. M. Meerschaert, “Fractional reproduction-dispersal equations and heavy tail dispersal kernels,” Bulletin of Mathematical Biology, vol. 69, no. 7, pp. 2281-2297, 2007. · Zbl 1296.92195 · doi:10.1007/s11538-007-9220-2
[14] M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for fractional advection-dispersion flow equations,” Journal of Computational and Applied Mathematics, vol. 172, no. 1, pp. 65-77, 2004. · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[15] M. M. Meerschaert, H.-P. Scheffler, and C. Tadjeran, “Finite difference methods for two-dimensional fractional dispersion equation,” Journal of Computational Physics, vol. 211, no. 1, pp. 249-261, 2006. · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[16] M. M. Meerschaert and C. Tadjeran, “Finite difference approximations for two-sided space-fractional partial differential equations,” Applied Numerical Mathematics, vol. 56, no. 1, pp. 80-90, 2006. · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[17] V. E. Lynch, B. A. Carreras, D. del-Castillo-Negrete, K. M. Ferreira-Mejias, and H. R. Hicks, “Numerical methods for the solution of partial differential equations of fractional order,” Journal of Computational Physics, vol. 192, no. 2, pp. 406-421, 2003. · Zbl 1047.76075 · doi:10.1016/j.jcp.2003.07.008
[18] H. W. Choi, S. K. Chung, and Y. J. Lee, “Numerical solutions for space fractional dispersion equations with nonlinear source terms,” Bulletin of the Korean Mathematical Society, vol. 47, no. 6, pp. 1225-1234, 2010. · Zbl 1208.65125 · doi:10.4134/BKMS.2010.47.6.1225
[19] W. Deng, “Numerical algorithm for the time fractional Fokker-Planck equation,” Journal of Computational Physics, vol. 227, no. 2, pp. 1510-1522, 2007. · Zbl 1388.35095 · doi:10.1016/j.jcp.2007.09.015
[20] W. Deng and C. Li, “Finite difference methods and their physical constraints for the fractional Klein-Kramers equation,” Numerical Methods for Partial Differential Equations, vol. 27, no. 6, pp. 1561-1583, 2011. · Zbl 1233.65052 · doi:10.1002/num.20596
[21] T. A. M. Langlands and B. I. Henry, “The accuracy and stability of an implicit solution method for the fractional diffusion equation,” Journal of Computational Physics, vol. 205, no. 2, pp. 719-736, 2005. · Zbl 1072.65123 · doi:10.1016/j.jcp.2004.11.025
[22] F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 12-20, 2007. · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[23] P. Zhuang, F. Liu, V. Anh, and I. Turner, “New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation,” SIAM Journal on Numerical Analysis, vol. 46, no. 2, pp. 1079-1095, 2008. · Zbl 1173.26006 · doi:10.1137/060673114
[24] V. J. Ervin and J. P. Roop, “Variational formulation for the stationary fractional advection dispersion equation,” Numerical Methods for Partial Differential Equations, vol. 22, no. 3, pp. 558-576, 2006. · Zbl 1095.65118 · doi:10.1002/num.20112
[25] J. P. Roop, “Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2,” Journal of Computational and Applied Mathematics, vol. 193, no. 1, pp. 243-268, 2006. · Zbl 1092.65122 · doi:10.1016/j.cam.2005.06.005
[26] V. J. Ervin, N. Heuer, and J. P. Roop, “Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation,” SIAM Journal on Numerical Analysis, vol. 45, no. 2, pp. 572-591, 2007. · Zbl 1141.65089 · doi:10.1137/050642757
[27] D. Braess, Finite Elements, Cambridge University Press, Cambridge, UK, 2nd edition, 2001. · Zbl 0976.65099
[28] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, vol. 15 of Texts in Applied Mathematics, Springer, New York, NY, USA, 1994. · Zbl 0804.65101
[29] Z. Bai and H. Lü, “Positive solutions for boundary value problem of nonlinear fractional differential equation,” Journal of Mathematical Analysis and Applications, vol. 311, no. 2, pp. 495-505, 2005. · Zbl 1079.34048 · doi:10.1016/j.jmaa.2005.02.052
[30] S. Tang and R. O. Weber, “Numerical study of Fisher’s equation by a Petrov-Galerkin finite element method,” Australian Mathematical Society B, vol. 33, no. 1, pp. 27-38, 1991. · Zbl 0728.65110 · doi:10.1017/S0334270000008602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.