×

A cell-based smoothed discrete shear gap method using triangular elements for static and free vibration analyses of Reissner-Mindlin plates. (English) Zbl 1253.74111

Summary: The cell-based strain smoothing technique is combined with discrete shear gap method using three-node triangular elements to give a so-called cell-based smoothed discrete shear gap method (CS-DSG3) for static and free vibration analyses of Reissner-Mindlin plates. In the process of formulating the system stiffness matrix of the CS-DSG3, each triangular element will be divided into three subtriangles, and in each subtriangle, the stabilized discrete shear gap method is used to compute the strains and to avoid the transverse shear locking. Then the strain smoothing technique on whole the triangular element is used to smooth the strains on these three subtriangles. The numerical examples demonstrated that the CS-DSG3 is free of shear locking, passes the patch test, and shows four superior properties such as: (1) being a strong competitor to many existing three-node triangular plate elements in the static analysis; (2) can give high accurate solutions for problems with skew geometries in the static analysis; (3) can give high accurate solutions in free vibration analysis; and (4) can provide accurately the values of high frequencies of plates by using only coarse meshes.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zienkiewicz, The finite element method 2 (2000) · Zbl 0962.76056
[2] Hughes, The finite element method: Linear static and dynamic finite element analysis (1987) · Zbl 0634.73056
[3] Bathe, Finite element procedures (1996)
[4] Henry Yang, A survey of recent shell finite elements, International Journal for Numerical Methods in Engineering 47 pp 101– (2000) · Zbl 0987.74001 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
[5] Mackerle, Finite element linear and nonlinear, static and dynamic analysis of structural elements: A bibliography (1992-1995), Engineering Computations 14 (4) pp 347– (1997) · Zbl 0983.74500 · doi:10.1108/02644409710178494
[6] Mackerle, Finite element linear and nonlinear, static and dynamic analysis of structural elements: A bibliography (1999-2002), Engineering Computations 19 (5) pp 520– (2002) · Zbl 1021.74001 · doi:10.1108/02644400210435843
[7] Leissa, Vibration of plates (1969) · Zbl 0181.52603
[8] Leissa, A review of laminated composite plate buckling, Applied Mechanics Reviews 40 (5) pp 575– (1987) · doi:10.1115/1.3149534
[9] Robert, Formulas for natural frequency and mode shape (1979)
[10] Liew, Research on thick plate vibration: A literature survey, Journal of Sound and Vibration 180 (1) pp 163– (1995) · Zbl 1237.74002 · doi:10.1006/jsvi.1995.0072
[11] Reddy, Theory and analysis of elastic plates and shells (2006)
[12] Gruttmann, A stabilized one-point integrated quadrilateral Reissner-Mindlin plate element, International Journal for Numerical Methods in Engineering 61 pp 2273– (2004) · Zbl 1075.74646 · doi:10.1002/nme.1148
[13] Brasile, An isostatic assumed stress triangular element for the Reissner-Mindlin plate-bending problem, International Journal for Numerical Methods in Engineering 74 pp 971– (2008) · Zbl 1158.74480 · doi:10.1002/nme.2194
[14] Cen, Application of the quadrilateral area co-ordinate method: A new element for Mindlin-Reissner plate, International Journal for Numerical Methods in Engineering 66 pp 1– (2006) · Zbl 1110.74845 · doi:10.1002/nme.1533
[15] Nguyen-Xuan, An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering 199 pp 471– (2009) · Zbl 1227.74083 · doi:10.1016/j.cma.2009.09.001
[16] Ayad, A new hybrid-mixed variational approach for Reissner-Mindlin plates. The MiSP Model, International Journal for Numerical Methods in Engineering 42 pp 1149– (1998) · Zbl 0912.73051 · doi:10.1002/(SICI)1097-0207(19980815)42:7<1149::AID-NME391>3.0.CO;2-2
[17] Ayad, An improved four-node hybrid-mixed element based upon Mindlin’s plate theory, International Journal for Numerical Methods in Engineering 55 pp 705– (2002) · Zbl 1058.74633 · doi:10.1002/nme.528
[18] Soh, A new twelve DOF quadrilateral element for analysis of thick and thin plate, European Journal of Mechanics A/Solids 20 (2) pp 299– (2001) · Zbl 1047.74068 · doi:10.1016/S0997-7538(00)01129-3
[19] Cen, A new hybrid-enhanced displacement-based element for the analysis of laminated composite plates, Computers and Structures 80 (9-10) pp 819– (2002) · doi:10.1016/S0045-7949(02)00049-4
[20] Cen, A new 4-node quadrilateral FE model with variable electrical degrees of freedom for the analysis of piezoelectric laminated composite plates, Composite Structures 58 (4) pp 583– (2002) · doi:10.1016/S0263-8223(02)00167-8
[21] Zienkiewicz, Reduced integration techniques in general of plates and shells, International Journal for Numerical Methods in Engineering 3 pp 275– (1971) · Zbl 0253.73048 · doi:10.1002/nme.1620030211
[22] Hughes, A simple and efficient finite element for plate bending, International Journal for Numerical Methods in Engineering 11 pp 1529– (1977) · Zbl 0363.73067 · doi:10.1002/nme.1620111005
[23] Hughes, Reduced and selective integration techniques in finite element method of plates, Nuclear Engineering and Design 46 pp 203– (1978) · doi:10.1016/0029-5493(78)90184-X
[24] Belytschko, A stabilization matrix for the bilinear Mindlin plate element, Computer Methods in Applied Mechanics and Engineering 29 pp 313– (1981) · Zbl 0474.73091 · doi:10.1016/0045-7825(81)90048-7
[25] Belytschko, A stabilization procedure for the quadrilateral plate element with one point quadrature, International Journal for Numerical Methods in Engineering 19 pp 405– (1983) · Zbl 0502.73058 · doi:10.1002/nme.1620190308
[26] Bergan, Quadrilateral plate bending elements with shear deformations, Computers and Structures 19 (1-2) pp 25– (1984) · Zbl 0549.73071 · doi:10.1016/0045-7949(84)90199-8
[27] Hinton, A family of quadrilateral Mindlin plate element with substitute shear strain fields, Computers and Structures 23 (3) pp 409– (1986) · doi:10.1016/0045-7949(86)90232-4
[28] Lee, Finite elements based upon Mindlin plate theory with particular reference to the four-node isoparametric element, AIAA Journal 16 pp 29– (1978) · Zbl 0368.73067 · doi:10.2514/3.60853
[29] Lee, Mixed formulation finite elements for Mindlin theory plate bending, International Journal for Numerical Methods in Engineering 18 pp 1297– (1982) · Zbl 0486.73069 · doi:10.1002/nme.1620180903
[30] Lovadina, Analysis of a mixed finite element method for the Reissner-Mindlin plate problems, Computer Methods in Applied Mechanics and Engineering 163 pp 71– (1998) · Zbl 0962.74065 · doi:10.1016/S0045-7825(98)00003-6
[31] De Miranda, A simple hybrid stress element for shear deformable plates, International Journal for Numerical Methods in Engineering 65 pp 808– (2006) · Zbl 1113.74066 · doi:10.1002/nme.1467
[32] Macneal, Derivation of element stiffness matrices by assumed strain distributions, Nuclear Engineering and Design 70 pp 3– (1982) · doi:10.1016/0029-5493(82)90262-X
[33] Park, A curved C0 shell element based on assumed natural-coordinate strains, Journal of Applied Mechanics 53 pp 278– (1986) · Zbl 0588.73137 · doi:10.1115/1.3171752
[34] Bathe, Proceedings of the Conference on Mathematics of Finite Elements and Applications V pp 491– (1985) · doi:10.1016/B978-0-12-747255-3.50042-3
[35] Bathe, Proceedings of the Conference NUMETA (1987)
[36] Brezzi, Mixed-interpolated elements for Reissner-Mindlin plates, International Journal for Numerical Methods in Engineering 28 pp 1787– (1989) · Zbl 0705.73238 · doi:10.1002/nme.1620280806
[37] Bathe, A four-node plate bending element based on Mindlin-Reissner plate theory and a mixed interpolation, International Journal for Numerical Methods in Engineering 21 pp 367– (1985) · Zbl 0551.73072 · doi:10.1002/nme.1620210213
[38] Dvorkin, A continuum mechanics based four-node shell element for general non-linear analysis, Engineering Computations 1 pp 77– (1984) · doi:10.1108/eb023562
[39] Bathe, A formulation of general shell elements-the use of mixed interpolation of tensorial components, International Journal for Numerical Methods in Engineering 22 pp 697– (1986) · Zbl 0585.73123 · doi:10.1002/nme.1620220312
[40] Bathe, Analytical and Computational Models for shells 3 pp 261– (1989)
[41] Onate, A general methodology for deriving shear constrained Reissner-Mindlin plate elements, International Journal for Numerical Methods in Engineering 33 pp 345– (1992) · Zbl 0761.73111 · doi:10.1002/nme.1620330208
[42] Onate, New advances in computational structural mechanics pp 237– (1992)
[43] Zienkiewicz, Linked interpolation for Reissner-Mindlin plate elements. Part I-a simple quadrilateral, International Journal for Numerical Methods in Engineering 36 pp 3043– (1993) · Zbl 0780.73090 · doi:10.1002/nme.1620361802
[44] Taylor, Linked interpolation for Reissner-Mindlin plate element. Part II-a simple triangle, International Journal for Numerical Methods in Engineering 36 pp 3057– (1993) · Zbl 0781.73071 · doi:10.1002/nme.1620361803
[45] Batoz, A study of three-node triangular plate bending elements, International Journal for Numerical Methods in Engineering 15 pp 1771– (1980) · Zbl 0463.73071 · doi:10.1002/nme.1620151205
[46] Batoz, Evaluation of a new quadrilateral thin plate bending element, International Journal for Numerical Methods in Engineering 18 pp 1655– (1982) · Zbl 0489.73080 · doi:10.1002/nme.1620181106
[47] Katili, A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: An extended DKT element for thick-plate bending analysis, International Journal for Numerical Methods in Engineering 36 pp 1859– (1993) · Zbl 0775.73263 · doi:10.1002/nme.1620361106
[48] Katili, A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part II: An extended DKQ element for thick-plate bending analysis, International Journal for Numerical Methods in Engineering 36 pp 1885– (1993) · Zbl 0775.73264 · doi:10.1002/nme.1620361107
[49] Wanji, Refined quadrilateral element based on Midlin/Reissner plate theory, International Journal for Numerical Methods in Engineering 47 pp 605– (2000) · Zbl 0970.74072 · doi:10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
[50] Wanji, Resined 9-DOF triangular Mindlin plate element, International Journal for Numerical Methods in Engineering 51 pp 1259– (2001) · Zbl 1065.74606 · doi:10.1002/nme.196
[51] Zengjie, Refined triangular discrete Mindlin flat shell elements, Computational Mechanics 33 pp 52– (2003) · Zbl 1063.74545 · doi:10.1007/s00466-003-0499-z
[52] Bletzinger, A unified approach for shear-locking free triangular and rectangular shell finite elements, Computers and Structures 75 pp 321– (2000) · doi:10.1016/S0045-7949(99)00140-6
[53] Liu, Smoothed finite element methods (2010) · doi:10.1201/EBK1439820278
[54] Chen, A stabilized conforming nodal integration for galerkin mesh-free methods, International Journal for Numerical Methods in Engineering 50 pp 435– (2001) · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[55] Liu, A smoothed finite element for mechanics problems, Computational Mechanics 39 pp 859– (2007) · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4
[56] Liu, Theoretical aspects of the smoothed finite element method (SFEM), International Journal for Numerical Methods in Engineering 71 pp 902– (2007) · Zbl 1194.74432 · doi:10.1002/nme.1968
[57] Nguyen-Thoi, Selective smoothed finite element method, Tsinghua Science and Technology 12 (5) pp 497– (2007) · doi:10.1016/S1007-0214(07)70125-6
[58] Dai, Free and forced vibration analysis using the smoothed finite element method (SFEM), Journal of Sound and Vibration 301 pp 803– (2007) · doi:10.1016/j.jsv.2006.10.035
[59] Cui, A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells, CMES-Computer Modeling in Engineering and Sciences 28 (2) pp 109– (2008) · Zbl 1232.74099
[60] Liu, On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor), International Journal for Numerical Methods in Engineering 77 pp 1863– (2009) · Zbl 1181.74137 · doi:10.1002/nme.2587
[61] Nguyen-Xuan, A stabilized smoothed finite element method for free vibration analysis of Mindlin-Reissner plates, Communications in Numerical Methods in Engineering 25 pp 882– (2009) · Zbl 1172.74047 · doi:10.1002/cnm.1137
[62] Dai, An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics, Finite elements in analysis and design 43 pp 847– (2007) · doi:10.1016/j.finel.2007.05.009
[63] Liu, A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems, Computers and Structures 87 pp 14– (2009) · doi:10.1016/j.compstruc.2008.09.003
[64] Nguyen-Thoi, Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems, International Journal of Computational Methods 6 pp 633– (2009) · Zbl 1267.74115 · doi:10.1142/S0219876209001954
[65] Nguyen-Thoi, Adaptive analysis using the node-based smoothed finite element method (NS-FEM), Communications in Numerical Methods in Engineering 27 (2) pp 198– (2009) · Zbl 1267.74115
[66] Nguyen-Thoi, A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes, Computer Methods in Applied Mechanics and Engineering 199 pp 3005– (2010) · Zbl 1231.74432 · doi:10.1016/j.cma.2010.06.017
[67] Liu, A novel alpha finite element method ({\(\alpha\)} FEM) for exact solution to mechanics problems using triangular and tetrahedral elements, Computer Methods in Applied Mechanics and Engineering 197 pp 3883– (2008) · Zbl 1194.74433 · doi:10.1016/j.cma.2008.03.011
[68] Liu, An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids, Journal of Sound and Vibration 320 pp 1100– (2009) · doi:10.1016/j.jsv.2008.08.027
[69] Nguyen-Thoi, An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics, Communications in Numerical Methods in Engineering 27 (9) pp 1446– (2011) · Zbl 1248.74043
[70] Nguyen-Thoi, An edge-based smoothed finite element method (ES-FEM) for visco-elastoplastic analyses of 2D solids using triangular mesh, Computational Mechanics 45 pp 23– (2009) · Zbl 1398.74382 · doi:10.1007/s00466-009-0415-2
[71] Nguyen-Xuan, An edge-based smoothed finite element method (ES-FEM) for analysis of two-dimensional piezoelectric structures, Smart Materials and Structures 18 pp 1– (2009) · doi:10.1088/0964-1726/18/6/065015
[72] Nguyen-Xuan, An edge-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates, Computer Methods in Applied Mechanics and Engineering 199 pp 471– (2009)
[73] Tran, An edge-based smoothed finite element method for primal-dual shakedown analysis of structures, International Journal for Numerical Methods in Engineering 82 pp 917– (2010) · Zbl 1188.74073
[74] Nguyen-Thoi, A face-based smoothed finite element method (FS-FEM) for 3D linear and nonlinear solid mechanics problems using 4-node tetrahedral elements, International Journal for Numerical Methods in Engineering 78 pp 324– (2009) · Zbl 1183.74299 · doi:10.1002/nme.2491
[75] Nguyen-Thoi, A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh, Computer Methods Applied Mechanics Engineering 198 pp 3479– (2009) · Zbl 1230.74193 · doi:10.1016/j.cma.2009.07.001
[76] Liu, Meshfree methods: Moving beyond the finite element method (2009) · Zbl 1205.74003 · doi:10.1201/9781420082104
[77] Lyly, A stable bilinear element for the Reissner-Mindlin plate model, Computer Methods Applied Mechanics Engineering 110 pp 343– (1993) · Zbl 0846.73065 · doi:10.1016/0045-7825(93)90214-I
[78] Liu, The finite element method: A practical course (2002)
[79] Bischoff, Trends in computational structural mechanics (2001)
[80] Tessler, A three-node mindlin plate element with improved transverse shear, Computer Methods Applied Mechanics Engineering 50 pp 71– (1985) · Zbl 0562.73069 · doi:10.1016/0045-7825(85)90114-8
[81] Morley, Skew plates and structures (1963) · Zbl 0124.17704
[82] Abbassian, Free vibration benchmarks (1987)
[83] Karunasena, Natural frequencies of thick arbitrary quadrilateral plates using the pb-2 Ritz method, Journal of Sound and Vibration 196 pp 371– (1996) · doi:10.1006/jsvi.1996.0489
[84] Irie, Natural frequencies of Mindlin circular plates, Journal of Applied Mechanics 47 pp 652– (1980) · Zbl 0441.73067 · doi:10.1115/1.3153748
[85] Lee, Free vibration analysis of plates by using a four-node finite element formulated with assumed natural transverse shear strain, Journal of Sound and Vibration 278 pp 657– (2004) · doi:10.1016/j.jsv.2003.10.018
[86] Lee, Free-vibration analysis of plates and shells with a nine-node assumed natural degenerated shell element, Journal of Sound and Vibration 241 pp 605– (2001) · doi:10.1006/jsvi.2000.3313
[87] McGee, Vibrations of cantilevered skewed trapezodial and triangular plates with corner stress singularities, International Journal of Mechanical Sciences 34 pp 63– (1992) · doi:10.1016/0020-7403(92)90054-K
[88] Karunasena, Free vibration of cantilevered arbitrary triangular mindlin plates, International Journal ofMechanical Sciences 38 pp 431– (1996) · Zbl 0841.73034 · doi:10.1016/0020-7403(95)00060-7
[89] Gustafson, An experimental study of natural vibrations of cantilevered triangular plate, Journal of the aeronautical sciences 20 pp 331– (1953) · doi:10.2514/8.2635
[90] McGee, Natural vibrations of shear deformable cantilevered skewed trapezodial and triangular thick plates, Computers and Structures 45 pp 1033– (1992) · doi:10.1016/0045-7949(92)90060-D
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.