×

Twistor-beam excitations of black holes and prequantum Kerr-Schild geometry. (English) Zbl 1253.83018

Theor. Math. Phys. 163, No. 3, 782-787 (2010) and Teor. Mat. Fiz. 163, No. 3, 467-474 (2010).
Summary: Exact Kerr-Schild (KS) solutions for electromagnetic excitations of black holes are singular beams supported on twistor lines of the KS geometry. These beams have a very strong back-reaction on the metric and horizon and create a fluctuating KS geometry occupying an intermediate position between the classical and quantum gravities. We consider the Kerr theorem, which determines the twistor structure of the KS geometry and the corresponding holographic prequantum space-time adapted to a subsequent quantum treatment.

MSC:

83C57 Black holes
81R25 Spinor and twistor methods applied to problems in quantum theory
83C45 Quantization of the gravitational field
83C60 Spinor and twistor methods in general relativity and gravitational theory; Newman-Penrose formalism
78A25 Electromagnetic theory (general)
83C22 Einstein-Maxwell equations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] E. Witten, Comm. Math. Phys., 252, 189–258 (2004). · Zbl 1105.81061
[2] G. C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys., 10, 1842–1854 (1969).
[3] A. Burinskii, Gen. Relativity Gravitation, 41, 2281–2286 (2009); arXiv:0903.3162v3 [gr-qc] (2009); ”Beam-like excitations of Kerr-Schild geometry and semiclassical mechanism of black-hole evaporation,” arXiv:0903.2365v3 [hep-th] (2009). · Zbl 1176.83078
[4] G. W. Gibbons, Comm. Math. Phys., 45, 191–202 (1975).
[5] C. R. Stephens, G.’ t Hooft, and B. F. Whiting, Class. Q. Grav., 11, 621–647 (1994).
[6] R. Penrose, J. Math. Phys., 8, 345–366 (1967). · Zbl 0163.22602
[7] R. Penrose and W. Rindler, Spinors and Space-Time (Cambridge Monogr. Math. Phys., Vol. 2), Vol. 2, Spinor and Twistor Methods in Space-Time Geometry, Cambridge Univ. Press, Cambridge (1986). · Zbl 0591.53002
[8] D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, Exact Solutions of Einstein’s Field Equations (Cambridge Monogr. Math. Phys., Vol. 6), Cambridge Univ. Press, Cambridge (1980). · Zbl 0449.53018
[9] A. Burinskii, Gravit. Cosmol., 11, 301–304 (2005); Int. J. Geom. Meth. Mod. Phys., 4, 437–456 (2007).
[10] A. Burinskii, Phys. Rev. D, 70, 086006 (2004).
[11] A. Burinskii, E. Elisalde, S. Hildebrandt, and G. Magli, Phys. Rev. D, 65, 064039 (2002).
[12] A. Burinskii, ”Regular superconducting source of the Kerr-Newman solution,” arXiv:1003.2928v1 [hep-th] (2010). · Zbl 1201.83019
[13] A. Burinskii, Gravit. Cosmol., 14, 109–122 (2008). · Zbl 1145.83333
[14] A. Burinskii, E. Elizalde, S. R. Hildebrandt, and G. Magli, Phys. Rev. D, 74, 021502(R) (2006); Gravit. Cosmol., 12, 119–125 (2006).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.