zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A three-dimensional numerical internal tidal model involving adjoint method. (English) Zbl 1253.86001
Summary: A three-dimensional internal tidal model involving the adjoint method is constructed based on the nonlinear, time-dependent, free-surface hydrodynamic equations in spherical coordinates horizontally, and isopycnic coordinates vertically, subject to the hydrostatic approximations. This model consists of two submodels: the forward model is used for the simulation of internal tides, while the adjoint model is used for optimization of modal parameters. Mode splitting technique is employed in both forward and adjoint models. In this model, the adjoint method is employed to estimate model parameters by assimilating the interior observations. As a preliminary feasibility study, a set of ideal experiments with the model-generated pseudo-observations of surface currents are performed to invert the open boundary conditions (OBCs). In the ideal experiments, 14 kinds of bottom topographies and six kinds of predetermined distributions of OBCs are considered to examine their influence on experiment results. The inversion obtained satisfying results and all the predetermined distributions were successfully inverted. Analysis of results suggests the following: in the case where the spatial variation of the OBC distribution is great or the open boundary is close to a rough topography, the results will be comparatively poor, but still satisfactory; both the tidal elevations and currents can be simulated very accurately with the surface currents at several observation points; the assimilation precision could be reliable and able to reflect both of the inversion and simulation results in the whole field. The performance and results of ideal experiments give a preliminary indication that the construction of this model is successful.

86-08Computational methods (geophysics)
65M06Finite difference methods (IVP of PDE)
86A05Hydrology, hydrography, oceanography
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
Full Text: DOI