[1] |
N. S. A. Ghoneim and S. C. Wirasinghe, “Optimum zone structure during peak periods for existing urban rail lines,” Transportation Research B, vol. 20, no. 1, pp. 7-18, 1986. |

[2] |
J. W. Goossens, S. van Hoesel, and L. Kroon, “On solving multi-type railway line planning problems,” European Journal of Operational Research, vol. 168, no. 2, pp. 403-424, 2006. · Zbl 1101.90038
· doi:10.1016/j.ejor.2004.04.036 |

[3] |
C. Liebchen, “The first optimized railway timetable in practice,” Transportation Science, vol. 42, no. 4, pp. 420-435, 2008.
· doi:10.1287/trsc.1080.0240 |

[4] |
M. T. Claessens, N. M. Van Dijk, and P. J. Zwaneveld, “Cost optimal allocation of rail passenger lines,” European Journal of Operational Research, vol. 110, no. 3, pp. 474-489, 1998. · Zbl 0948.90097
· doi:10.1016/S0377-2217(97)00271-3 |

[5] |
K. Ghoseiri, F. Szidarovszky, and M. J. Asgharpour, “A multi-objective train scheduling model and solution,” Transportation Research B, vol. 38, no. 10, pp. 927-952, 2004.
· doi:10.1016/j.trb.2004.02.004 |

[6] |
M. B. Khan and X. Zhou, “Stochastic optimization model and solution algorithm for robust double-track train-timetabling problem,” IEEE Transactions on Intelligent Transportation Systems, vol. 11, no. 1, pp. 81-89, 2010.
· doi:10.1109/TITS.2009.2030588 |

[7] |
X. Zhou and M. Zhong, “Single-track train timetabling with guaranteed optimality: branch-and-bound algorithms with enhanced lower bounds,” Transportation Research B, vol. 41, no. 3, pp. 320-341, 2007.
· doi:10.1016/j.trb.2006.05.003 |

[8] |
K. Nachtigall and S. Voget, “Minimizing waiting times in integrated fixed interval timetables by upgrading railway tracks,” European Journal of Operational Research, vol. 103, no. 3, pp. 610-627, 1997. · Zbl 0921.90068
· doi:10.1016/S0377-2217(96)00284-6 |

[9] |
A. de Palma and R. Lindsey, “Optimal timetables for public transportation,” Transportation Research B, vol. 35, no. 8, pp. 789-813, 2001.
· doi:10.1016/S0191-2615(00)00023-0 |

[10] |
S. Nguyen, S. Pallottino, and F. Malucelli, “A modeling framework for passenger assignment on a transport network with timetables,” Transportation Science, vol. 35, no. 3, pp. 238-249, 2001. · Zbl 1041.90501
· doi:10.1287/trsc.35.3.238.10152 |

[11] |
R. C. W. Wong, T. W. Y. Yuen, K. W. Fung, and J. M. Y. Leung, “Optimizing timetable synchronization for rail mass transit,” Transportation Science, vol. 42, no. 1, pp. 57-69, 2008.
· doi:10.1287/trsc.1070.0200 |

[12] |
L. Meng and X. Zhou, “Robust single-track train dispatching model under a dynamic and stochastic environment: a scenario-based rolling horizon solution approach,” Transportation Research B, vol. 45, no. 7, pp. 1080-1102, 2011.
· doi:10.1016/j.trb.2011.05.001 |

[13] |
M. Carey and I. Crawford, “Scheduling trains on a network of busy complex stations,” Transportation Research B, vol. 41, no. 2, pp. 159-178, 2007.
· doi:10.1016/j.trb.2006.02.002 |

[14] |
G. Caimi, F. Chudak, M. Fuchsberger, M. Laumanns, and R. Zenklusen, “A new resource-constrained multicommodity flow model for conflict-free train routing and scheduling,” Transportation Science, vol. 45, no. 2, pp. 212-227, 2011.
· doi:10.1287/trsc.1100.0349 |

[15] |
Y. H. Chang, C. H. Yeh, and C. C. Shen, “A multiobjective model for passenger train services planning: application to Taiwan’s high-speed rail line,” Transportation Research B, vol. 34, no. 2, pp. 91-106, 2000.
· doi:10.1016/S0191-2615(99)00013-2 |

[16] |
M. Gen and R. W. Cheng, Genetic Algorithms and Engineering Optimization, John Wiley & Son, New York, NY, USA, 2000. |

[17] |
H. M. Niu, “Determination of the skip-stop scheduling for a congested transit line by bilevel genetic algorithm,” International Journal of Computational Intelligence Systems, vol. 4, no. 6, pp. 1158-1167, 2011. |

[18] |
J. Gao,, R. Chen, and Q. Pan, “A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem,” International Journal of Computational Intelligence Systems, vol. 4, no. 4, pp. 497-508, 2011. |