[1] |
Baillon, J. B.; Bruck, R. E.; Reich, S.: On the asymptotic behavior of nonexpansive mappings and semigroups in Banach spaces. Houston J. Math. 4, 1-9 (1978) · Zbl 0396.47033 |

[2] |
Bauschke, H. H.; Borwein, J. M.: On projection algorithms for solving convex feasibility problems. SIAM rev. 38, 367-426 (1996) · Zbl 0865.47039 |

[3] |
Bauschke, H. H.; Combettes, P. L.; Kruk, S. G.: Extrapolation algorithm for affine-convex feasibility problems. Numer. algorithms 41, 239-274 (2006) · Zbl 1098.65060 |

[4] |
Bruck, R. E.; Reich, S.: Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 3, 459-470 (1977) · Zbl 0383.47035 |

[5] |
Byrne, C.: Bregman -- Legendre multidistance projection algorithms for convex feasibility and optimization. Inherently parallel algorithms in feasibility and optimization and their applications, 87-100 (2001) · Zbl 0990.90094 |

[6] |
Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse problems 18, 441-453 (2002) · Zbl 0996.65048 |

[7] |
Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse problems 20, 103-120 (2004) · Zbl 1051.65067 |

[8] |
Byrne, C.; Censor, Y.: Proximity function minimization using multiple Bregman projections, with applications to split feasibility and Kullback -- Leibler distance minimization. Ann. oper. Res. 105, 77-98 (2001) · Zbl 1012.90035 |

[9] |
A. Cegielski, Convergence of the projected surrogate constraints method for the linear split feasibility problems, J. Convex Anal. 14 (2007), in press · Zbl 1128.65039 |

[10] |
A. Cegielski, Projection methods for the linear split feasibility problems, Technical Report, September 14, 2004, Institute of Mathematics, University of Zielona Góra, Zielona Góra, Poland · Zbl 1148.65037 |

[11] |
Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM rev. 23, 444-466 (1981) · Zbl 0469.65037 |

[12] |
Censor, Y.; Bortfeld, T.; Martin, B.; Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. medicine biology 51, 2353-2365 (2006) |

[13] |
Censor, Y.; Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. algorithms 8, 221-239 (1994) · Zbl 0828.65065 |

[14] |
Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T.: The multiple-sets split feasibility problem and its applications for inverse problems. Inverse problems 21, 2071-2084 (2005) · Zbl 1089.65046 |

[15] |
Censor, Y.; Gordon, D.; Gordon, R.: BICAV: A block-iterative, parallel algorithm for sparse systems with pixel-related weighting. IEEE trans. Medical imaging 20, 1050-1060 (2001) |

[16] |
Censor, Y.; Lent, A.: Cyclic subgradient projections. Math. programming 24, 233-235 (1982) · Zbl 0491.90077 |

[17] |
Censor, Y.; Zenios, S. A.: Parallel optimization: theory, algorithms, and applications. (1997) · Zbl 0945.90064 |

[18] |
Crombez, G.: Non-monotoneous parallel iteration for solving convex feasibility problems. Kybernetika 39, 547-560 (2003) · Zbl 1249.65040 |

[19] |
G. Crombez, A sequential iteration algorithm with non-monotoneous behaviour in the method of projections onto convex sets, Czechoslovak Math. J., in press · Zbl 1164.47399 |

[20] |
Golshtein, E.; Tretyakov, N.: Modified Lagrangians and monotone maps in optimization. (1996) · Zbl 0848.49001 |

[21] |
Noor, M. Aslam: Some developments in general variational inequalities. Appl. math. Comput. 152, 197-277 (2004) · Zbl 1134.49304 |

[22] |
Pierra, G.: Decomposition through formalization in a product space. Math. programming 28, 96-115 (1984) · Zbl 0523.49022 |

[23] |
Qu, B.; Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse problems 21, 1655-1665 (2005) · Zbl 1080.65033 |

[24] |
Reich, S.: Averaged mappings in the Hilbert ball. J. math. Anal. appl. 109, 199-206 (1985) · Zbl 0588.47061 |

[25] |
P.S.M. Santos and S. Scheimberg, A projection algorithm for general variational inequalities with perturbed constraint sets, Appl. Math. Comput. (2006), in press · Zbl 1148.65308 |

[26] |
Stark, H.; Yang, Y.: Vector space projections: A numerical approach to signal and image processing, neural nets, and optics. (1998) · Zbl 0903.65001 |

[27] |
Yamada, I.: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. funct. Anal. optim. 25, 619-655 (2004) · Zbl 1095.47049 |

[28] |
Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse problems 20, 1261-1266 (2004) · Zbl 1066.65047 |

[29] |
Yang, Q.: On variable-step relaxed projection algorithm for variational inequalities. J. math. Anal. appl. 302, 166-179 (2005) · Zbl 1056.49018 |

[30] |
Yang, Q.; Zhao, J.: Generalized KM theorems and their applications. Inverse problems 22, 833-844 (2006) · Zbl 1117.65081 |

[31] |
Zhao, J.; Yang, Q.: Several solution methods for the split feasibility problem. Inverse problems 21, 1791-1799 (2005) · Zbl 1080.65035 |