Durbach, Ian N.; Stewart, Theodor J. Modeling uncertainty in multi-criteria decision analysis. (English) Zbl 1253.91047 Eur. J. Oper. Res. 223, No. 1, 1-14 (2012). Summary: We provide a review of multiple criteria decision analysis (MCDA) for cases where attribute evaluations are uncertain. The main aim is to identify different tools which can be used to represent uncertain evaluations, and to broadly survey the available decision models that can be used to support uncertain decision making. The review includes models using probabilities or probability-like quantities; explicit risk measures such as quantiles and variances; fuzzy numbers, and scenarios. The practical assessment of uncertain outcomes and preferences associated with these outcomes is also discussed. Cited in 32 Documents MSC: 91B06 Decision theory Keywords:decision analysis; multiple criteria analysis; risk management; uncertainty modeling Software:4eMka2 PDF BibTeX XML Cite \textit{I. N. Durbach} and \textit{T. J. Stewart}, Eur. J. Oper. Res. 223, No. 1, 1--14 (2012; Zbl 1253.91047) Full Text: DOI References: [1] Abdellaoui, M., Parameter-free elicitation of utility and probability weighting functions, Management Science, 1497-1512 (2000) · Zbl 1232.91114 [2] Abdellaoui, M.; Barrios, C.; Wakker, P., Reconciling introspective utility with revealed preference: Experimental arguments based on prospect theory, Journal of Econometrics, 138, 1, 356-378 (2007) · Zbl 1420.91070 [3] Abdellaoui, M.; Bleichrodt, H.; Paraschiv, C., Loss aversion under prospect theory: a parameter-free measurement, Management Science, 53, 10, 1659-1674 (2007) [4] Abdellaoui, M.; Hey, J., Advances in Decision Making Under Risk and Uncertainty (2008), Springer Verlag [5] Allais, M., Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’école Americaine, Econometrica, 21, 503-546 (1953) · Zbl 0050.36801 [7] Ashtiani, B.; Haghighirad, F.; Makui, A.; ali Montazer, G., Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets, Applied Soft Computing, 9, 457-461 (2009) [8] Azondékon, S.; Martel, J., Value of additional information in multicriterion analysis under uncertainty, European Journal of Operational Research, 117, 45-62 (1999) · Zbl 0998.90045 [9] Ballestero, E., Stochastic goal programming: a mean-variance approach, European Journal of Operational Research, 131, 476-481 (2001) · Zbl 0980.90058 [10] Banuelas, R.; Antony, J., Application of stochastic analytic hierarchy process within a domestic appliance manufacturer, Journal of the Operational Research Society, 58, 1, 29 (2007) · Zbl 1155.90399 [11] Bawa, V., Optimal rules for ordering uncertain prospects, Journal of Financial Economics, 2, 1, 95-121 (1975) [12] Becker, J.; Sarin, R., Gamble dependent utility, Management Science, 33, 1367-1382 (1987) · Zbl 0646.90007 [13] Belton, V.; Stewart, T., Multiple Criteria Decision Analysis: An Integrated Approach (2002), Kluwer Academic Publishers: Kluwer Academic Publishers Boston [14] Ben Amor, S.; Jabeur, K.; Martel, J., Multiple criteria aggregation procedure for mixed evaluations, European Journal of Operational Research, 181, 3, 1506-1515 (2007) · Zbl 1123.90043 [15] Bilgiç, T.; Türkşen, İ., Measurement and elicitation of membership functions, (Pedrycz, W.; Skowron, A.; Kreinovich, V., Handbook of Granular Computing (2008), Wiley Online Library) · Zbl 0974.03046 [16] Birnbaum, M., New paradoxes of risky decision making, Psychological Review, 115, 2, 463 (2008) [17] Bleichrodt, H.; Miyamoto, J., A characterization of quality-adjusted life-years under cumulative prospect theory, Mathematics of Operations Research, 181-193 (2003) · Zbl 1082.91037 [18] Bleichrodt, H.; Pinto, J., A parameter-free elicitation of the probability weighting function in medical decision analysis, Management Science, 1485-1496 (2000) [19] Bleichrodt, H.; Pinto, J.; Wakker, P., Making descriptive use of prospect theory to improve the prescriptive use of expected utility, Management Science, 1498-1514 (2001) · Zbl 1232.91212 [20] Bordley, R.; Kirkwood, C., Multiattribute preference analysis with performance targets, Operations Research, 52, 6, 823 (2004) · Zbl 1165.90486 [21] Boujelben, M.; De Smet, Y.; Frikha, A.; Chabchoub, H., A ranking model in uncertain, imprecise and multi-experts contexts: the application of evidence theory, International Journal of Approximate Reasoning, 52, 8, 1171-1194 (2011) · Zbl 1226.68109 [22] Boujelben, M.; Smet, Y.; Frikha, A.; Chabchoub, H., Building a binary outranking relation in uncertain, imprecise and multi-experts contexts: the application of evidence theory, International Journal of Approximate Reasoning, 50, 8, 1259-1278 (2009) · Zbl 1186.91059 [23] Buckley, J., Fuzzy hierarchical analysis, Fuzzy Sets and Systems, 17, 3, 233-247 (1985) · Zbl 0602.90002 [24] Cairns, G.; Wright, G.; Bradfield, R.; van der Heijden, K.; Burt, G., Exploring e-government futures through the application of scenario planning, Technological Forecasting & Social Change, 71, 3, 217-238 (2004) [25] Camerer, C.; Ho, T., Violations of the betweenness axiom and nonlinearity in probability, Journal of Risk and Uncertainty, 8, 2, 167-196 (1994) · Zbl 0925.90038 [27] Castagnoli, E.; Calzi, M., Expected utility without utility, Theory and Decision, 41, 3, 281-301 (1996) · Zbl 0876.90038 [28] Chameau, J.; Santamarina, J., Membership functions I: comparing methods of measurement, International Journal of Approximate Reasoning, 1, 3, 287-301 (1987) [29] Chang, D., Applications of the extent analysis method on fuzzy AHP, European Journal of Operational Research, 95, 3, 649-655 (1996) · Zbl 0926.91008 [30] Chang, T.-H.; Wang, T.-C., Using the fuzzy multi-criteria decision making approach for measuring the possibility of successful knowledge management, Information Sciences, 179, 355-370 (2009) [31] Chen, C., Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy Sets and Systems, 114, 1, 1-9 (2000) · Zbl 0963.91030 [32] Chen, S.-J.; Hwang, C.-L., Fuzzy Multiple Attribute Decision Making: Methods and Applications (1992), Springer-Verlag: Springer-Verlag Berlin [33] Chew, S., Axiomatic utility theories with the betweenness property, Annals of Operations Research, 19, 1, 273-298 (1989) · Zbl 0707.90024 [34] Chew, S.; Epstein, L.; Segal, U., Mixture Symmetry and Quadratic Utility, Econometrica, 59, 1, 139-163 (1991) · Zbl 0744.90018 [35] Chu, T.; Lin, Y., A fuzzy TOPSIS method for robot selection, The International Journal of Advanced Manufacturing Technology, 21, 4, 284-290 (2003) [36] Chu, T.-C.; Lin, Y., An extension to fuzzy MCDM, Computers and Mathematics with Applications, 57, 445-454 (2009) · Zbl 1165.90697 [37] d’Avignon, G.; Vincke, P., An outranking method under uncertainty, European Journal of Operational Research, 36, 311-321 (1988) · Zbl 0646.90001 [38] De, P.; Acharya, D.; Sahu, K., A chance-constrained goal programming model for capital budgeting, Journal of the Operational Research Society, 33, 635-638 (1982) · Zbl 0484.90077 [39] Dekel, E., An axiomatic characterization of preferences under uncertainty: weakening the independence axiom, Journal of Economic Theory, 40, 2, 304-318 (1986) · Zbl 0611.90007 [40] Dembo, R.; Rosen, D., The practice of portfolio replication. A practical overview of forward and inverse problems, Annals of Operations Research, 85, 267-284 (1999) · Zbl 0920.90006 [41] Dendrou, B.; Dendrou, S.; Houstis, E., Multiobjective decision analysis for engineering systems, Computers and Operations Research, 7, 301-312 (1980) [42] Deng, H., Multicriteria analysis with fuzzy pairwise comparison, International Journal of Approximate Reasoning, 21, 215-231 (1999) [44] Desimpelaere, C.; Marchant, T., An empirical test of some measurement-theoretic axioms for fuzzy sets, Fuzzy sets and systems, 158, 12, 1348-1359 (2007) [45] Dubois, D.; Prade, H., Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems, 17, 2-3, 191-209 (1990) · Zbl 0715.04006 [46] Durbach, I., An empirical test of the evidential reasoning approach’s synthesis axioms, Expert Systems with Applications, 39, 12, 11048-11054 (2012) [47] Durbach, I.; Stewart, T., Using expected values to simplify decision making under uncertainty, Omega, 37, 2, 312-330 (2009) [48] Durbach, I.; Stewart, T., An experimental study of the effect of uncertainty representation on decision making, European Journal of Operational Research, 214, 380-392 (2011) [49] Durbach, I.; Stewart, T., A comparison of simplified value function approaches for treating uncertainty in multi-criteria decision analysis, Omega, 40, 456-464 (2012) [50] Dyckerhoff, R., Decomposition of multivariate utility functions in non-additive expected utility theory, Journal of Multi-Criteria Decision Analysis, 3, 1 (1994) · Zbl 0854.90016 [51] Ellsberg, D., Risk, ambiguity, and the savage axioms, Quarterly Journal of Economics, 75, 643-669 (1961) · Zbl 1280.91045 [52] Fan, Z.; Liu, Y.; Feng, B., A method for stochastic multiple criteria decision making based on pairwise comparisons of alternatives with random evaluations, European Journal of Operational Research, 207, 2, 906-915 (2010) · Zbl 1206.90057 [53] (Figueira, J.; Greco, S.; Ehrgott, M., Multiple Criteria Decision Analysis: State of the Art Surveys (2005), Springer) · Zbl 1060.90002 [54] Fischoff, B.; de Bruin, W.; Güvenc, U.; Caruso, D.; Brilliant, L., Analyzing disaster risks and plans: an avian flu example, Journal of Risk and Uncertainty, 33, 131-149 (2006) · Zbl 1130.91349 [55] Fishburn, P., Foundations of risk measurement. I. Risk as probable loss, Management Science, 30, 4, 396-405 (1984) · Zbl 0552.90004 [56] French, S., Uncertainty and imprecision: Modelling and analysis, Journal of the Operational Research Society, 46, 70-79 (1995) · Zbl 0829.90078 [57] Garthwaite, P.; Kadane, J.; O’Hagan, A., Statistical methods for eliciting probability distributions, Journal of the American Statistical Association, 100, 470, 680-701 (2005) · Zbl 1117.62340 [58] Garthwaite, P.; O’Hagan, A., Quantifying expert opinion in the UK water industry: An experimental study, The Statistician, 455-477 (2000) [59] Gilovich, T.; Griffin, D.; Kahneman, D., Heuristics and biases: The psychology of intuitive judgment (2002), Cambridge University Press [60] Goodwin, P.; Wright, G., Decision Analysis for Management Judgement (2009), John Wiley & Sons: John Wiley & Sons Chichester [61] Goovaerts, M.; de Vylder, F.; Haezendonck, J., Insurance Premiums (1984), North-Holland: North-Holland Amsterdam · Zbl 0532.62082 [62] (Greco, S.; Ehrgott, M.; Figuera, J., Trends in Multiple Criteria Decision Analysis (2010), Springer) [63] Greco, S.; Inuiguchi, M.; Slowinski, R., Fuzzy rough sets and multiple-premise gradual decision rules, International Journal of Approximate Reasoning, 41, 2, 179-211 (2006) · Zbl 1093.68114 [64] Greco, S.; Matarazzo, B.; Slowinski, R., A new rough set approach to multicriteria and multiattribute classification, (Rough Sets and Current Trends in Computing (1998), Springer), 60-67 [65] Greco, S.; Matarazzo, B.; Słowinski, R., Handling missing values in rough set analysis of multi-attribute and multi-criteria decision problems, (New Directions in Rough Sets, Data Mining, and Granular-Soft Computing (1999), Springer), 146-157 · Zbl 1037.91510 [66] Greco, S.; Matarazzo, B.; Slowinski, R., Rough approximation of a preference relation by dominance relations, European Journal of Operational Research, 117, 63-83 (1999) · Zbl 0998.90044 [67] Greco, S.; Matarazzo, B.; Słowiński, R., The use of rough sets and fuzzy sets in MCDM, (Gal, T.; Stewart, T.; Hanne, T., Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht), (chapter 12) · Zbl 0948.90078 [68] Greco, S.; Matarazzo, B.; Slowinski, R., Rough sets theory for multicriteria decision analyis, European Journal of Operational Research, 129, 1-47 (2001) · Zbl 1008.91016 [69] Greco, S.; Matarazzo, B.; Słowiński, R., Dominance-based rough set approach to decision under uncertainty and time preference, Annals of Operations Research, 176, 1, 41-75 (2010) · Zbl 1233.91080 [70] Hadar, J.; Russell, W., Rules for ordering uncertain prospects, American Economic Review, 59, 1, 25-34 (1969) [71] Huang, C.; Kira, D.; Vertinsky, I., Stochastic dominance rules for multiattribute utility functions, Review of Economic Studies, 41, 611-615 (1978) · Zbl 0413.90010 [72] Hwang, C.; Yoon, K., Multiple Attribute Decision Making: Methods and Appllications (1981), Springer Verlag [73] Islei, G.; Lockett, G.; Naudé, P., Judgemental modelling as an aid to scenario planning and analysis, Omega, 27, 1, 61-73 (1999) [74] Jacquet-Lagrèze, E., Modelling preferences among distributions using fuzzy relations, (Jungermann, H.; De Zeeuw, G., Models and Experiments in Risk and Rationality (1977), D. Reidel Publishers: D. Reidel Publishers Dordrecht), 99-114 [75] Jain, S.; Khare, M., Construction of fuzzy membership functions for urban vehicular exhaust emissions modeling, Environmental Monitoring and Assessment, 167, 691-699 (2010) [76] Jensen, R., An alternative scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology (Print), 28, 3, 317-332 (1984) [77] Jia, J.; Dyer, J., A standard measure of risk and risk-value models, Management Science, 42, 12, 1691-1705 (1996) · Zbl 0886.90054 [78] Johnson, J.; Bruce, A., Calibration of subjective probability judgments in a naturalistic setting, Organizational Behavior and Human Decision Processes, 85, 2, 265-290 (2001) [79] Kahneman, D.; Slovic, P.; Tversky, A., Judgment Under Uncertainty: Heuristics and Biases (1982), Cambridge University Press [80] Kaufmann, A.; Gupta, M., Fuzzy Mathematical Models in Engineering and Management Science (1988), Elsevier · Zbl 0683.90024 [81] Keefer, D.; Bodily, S., Three-point approximations for continuous random variables, Management Science, 29, 5, 595-609 (1983) · Zbl 0511.60018 [82] Keeney, R.; Raiffa, H., Decisions with Multiple Objectives: Preferences and Value Tradeoffs (1993), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0488.90001 [83] Kirkwood, C., Estimating the impact of uncertainty on deterministic multiattribute evaluation, Management Science, 38, 6, 819-826 (1992) · Zbl 0825.90071 [84] Korhonen, A., Strategic financial management in a multinational financial conglomerate: a multiple goal stochastic programming approach, European Journal of Operational Research, 128, 418-434 (2001) · Zbl 0985.90048 [85] Krokhmal, P.; Zabarankin, M.; Uryasev, S., Modeling and optimization of risk, Surveys in Operations Research and Management Science, 16, 2, 49-66 (2011) [86] Kwiesielewicz, M., The logarithmic least squares and the generalized pseudoinverse in estimating ratios, European Journal of Operational Research, 93, 3, 611-619 (1996) · Zbl 0912.90005 [87] Lee, J.; Lee-Kwang, H., Comparison of fuzzy values on a continuous domain, Fuzzy Sets and Systems, 118, 3, 419-428 (2001) · Zbl 0971.03057 [88] Lempert, R.; Groves, D.; Popper, S.; Bankes, S., A general analytic method for generating robust strategies and narrative scenarios, Management Science, 52, 4, 514-528 (2006) [89] Leung, L.; Cao, D., On consistency and ranking of alternatives in fuzzy AHP, European Journal of Operational Research, 124, 1, 102-113 (2000) · Zbl 0960.90097 [90] Levary, R.; Wan, K., An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment, Omega, 27, 6, 661-677 (1999) [91] Liu, Y.; Fan, Z.; Zhang, Y., A method for stochastic multiple criteria decision making based on dominance degrees, Information Sciences, 181, 19, 4139-4153 (2011) · Zbl 1242.91047 [92] Luce, R.; Weber, E., An axiomatic theory of conjoint, expected risk, Journal of Mathematical Psychology, 30, 188-205 (1986) · Zbl 0596.92023 [93] Marchant, T., The measurement of membership by comparisons, Fuzzy Sets and Systems, 148, 2, 157-177 (2004) · Zbl 1093.91058 [94] Marchant, T., The measurement of membership by subjective ratio estimation, Fuzzy Sets and Systems, 148, 2, 179-199 (2004) · Zbl 1093.91059 [95] Marchant, T., A measurement-theoretic axiomatization of trapezoidal membership functions, IEEE Transactions on Fuzzy Systems, 15, 2, 238-242 (2007) [96] Martel, J.; d’Avignon, G.; Couillard, G., A fuzzy outranking relation in multicriteria decision making, European Journal of Operational Research, 25, 258-271 (1986) · Zbl 0587.90059 [97] Mikhailov, L., A fuzzy programming method for deriving priorities in the analytic hierarchy process, The Journal of the Operational Research Society, 51, 3, 341-349 (2000) · Zbl 1055.90560 [98] Mikhailov, L.; Tsvetinov, P., Evaluation of services using a fuzzy analytic hierarchy process, Applied Soft Computing Journal, 5, 1, 23-33 (2004) [99] Mingers, J.; Rosenhead, J., Problem structuring methods in action, European Journal of Operational Research, 152, 3, 530-554 (2004) · Zbl 1044.90027 [100] Miyamoto, J.; Wakker, P., Multiattribute utility theory without expected utility foundations, Operations Research, 313-326 (1996) · Zbl 0853.90009 [101] Montibeller, G.; Gummer, H.; Tumidei, D., Combining scenario planning and multi-criteria decision analysis in practice, Journal of Multi-criteria Decision Analysis, 14, 5-20 (2006) [102] Morton, A.; Fasolo, B., Behavioural decision theory for multi-criteria decision analysis: a guided tour, Journal of the Operational Research Society, 60, 2, 268-275 (2009) [103] (Munier, B.; Machina, M., Models and Experiments in Risk and Rationality (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0847.00015 [104] Murphy, A.; Winkler, R., Credible interval temperature forecasting: some experimental results, Monthly Weather Review, 102, 11, 784-794 (1974) [105] Newby-Clark, I.; Ross, M.; Buehler, R.; Koehler, D.; Griffin, D., People focus on optimistic scenarios and disregard pessimistic scenarios while predicting task completion times, Journal of Experimental Psychology: Applied, 6, 3, 171-181 (2000) [106] Nowak, M., Preference and veto thresholds in multicriteria analysis based on stochastic dominance, European Journal of Operational Research, 158, 2, 339-350 (2004) · Zbl 1067.90081 [107] O’Hagan, A.; Oakley, J., Probability is perfect, but we can’t elicit it perfectly, Reliability Engineering and System Safety, 85, 1-3, 239-248 (2004) [108] Quiggin, J., A theory of anticipated utility, Journal of Economic Behavior and Organization, 3, 4, 323-343 (1982) [109] Ram, C.; Montibeller, G.; Morton, A., Extending the use of scenario planning and MCDA for the evaluation of strategic options, Journal of the Operational Research Society, 62, 5, 817-829 (2010) [110] Saaty, T., The Analytic Hierarchy Process (1980), McGraw-Hill: McGraw-Hill New York · Zbl 1176.90315 [111] Sarin, R.; Weber, M., Risk-value models, European Journal of Operational Research, 70, 135-149 (1993) · Zbl 0800.90008 [112] Schoemaker, P., Scenario planning: a tool for strategic thinking, Sloan Management Review, 36 (1995), p. 25 [113] Shafer, G., A Mathematical Theory of Evidence (1976), Princeton University Press · Zbl 0359.62002 [114] Shanteau, J., Competence in experts: the role of task characteristics, Organizational Behavior and Human Decision Processes, 53, 252-266 (1992) [116] Slowinski, R.; Vanderpooten, D., A generalized definition of rough approximations based on similarity, IEEE Transactions on Knowledge and Data Engineering, 12, 2, 331-336 (2000) [117] Spetzler, C.; Staël Von Holstein, C.-A., Probability encoding in decision analysis, Management Science, 340-358 (1975) [118] Starmer, C., Developments in non-expected utility theory: the hunt for a descriptive theory of choice under risk, Journal of Economic Literature, 38, 332-382 (2000) [119] Stewart, T., Simplified approaches for multicriteria decision making under uncertainty, Journal of Multi-criteria Decision Analysis, 4, 246-258 (1995) · Zbl 0849.90080 [120] Stewart, T., Measurements of risk in fisheries management, ORiON, 14, 1/2, 1-15 (1998) [123] Stewart, T.; Losa, F., Towards reconciling outranking and value measurement practice, European Journal of Operational Research, 145, 3, 645-659 (2003) · Zbl 1011.90514 [124] Tervonen, T.; Figueira, J., A survey on stochastic multicriteria acceptability analysis methods, Journal of Multi-Criteria Decision Analysis, 15, 1-2, 1-14 (2008) · Zbl 1205.90268 [125] Thole, U.; Zimmermann, H.; Zysno, P., On the suitability of minimum and product operators for the intersection of fuzzy sets, Fuzzy Sets and Systems, 2, 2, 167-180 (1979) · Zbl 0408.94030 [126] Triantaphyllou, E.; Lin, C., Development and evaluation of five fuzzy multiattribute decision-making methods, International Journal of Approximate Reasoning, 14, 4, 281-310 (1996) · Zbl 0956.68535 [127] Tsaur, S.; Chang, T.; Yen, C., The evaluation of airline service quality by fuzzy MCDM, Tourism Management, 23, 2, 107-115 (2002) [128] Tsoukias, A., From decision theory to decision aiding methodology, European Journal of Operational Research, 187, 1, 138-161 (2008) [129] Tversky, A., Discussion, (Bell, D.; Raiffa, H.; Tversky, A., Decision Making: Descriptive, Normative, and Prescriptive Interactions (1988), Cambridge University Press: Cambridge University Press Cambridge), 599-612 [130] Tversky, A.; Kahneman, D., Judgment under uncertainty: heuristics and biases, Science, 185, 1124-1131 (1974) [131] Tversky, A.; Kahneman, D., Advances in prospect theory: cumulative representation of uncertainty, Journal of Risk and Uncertainty, 5, 4, 297-323 (1992) · Zbl 0775.90106 [132] Van der Heijden, K., Scenarios: The Art of Strategic Conversation (1996), John Wiley & Sons: John Wiley & Sons New York [133] van der Pas, J.; Walker, W.; Marchau, V.; Van Wee, G.; Agusdinata, D., Exploratory MCDA for handling deep uncertainties: the case of intelligent speed adaptation implementation, Journal of Multi-Criteria Decision Analysis, 17, 1/2, 1-23 (2010) [134] Vargas, L., Reciprocal matrices with random coefficients, Mathematical Modelling, 3, 1, 69-81 (1982) · Zbl 0537.62100 [135] Verkuilen, J., Assigning membership in a fuzzy set analysis, Sociological Methods & Research, 33, 4, 462-496 (2005) [137] Von Winterfeldt, D.; Edwards, W., Decision Analysis and Behavioural Research (1986), Cambridge University Press: Cambridge University Press London [138] Wakker, P.; Deneffe, D., Eliciting von Neumann-Morgenstern utilities when probabilities are distorted or unknown, Management Science, 1131-1150 (1996) · Zbl 0880.90008 [139] Wang, X.; Kerre, E., Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Systems, 118, 3, 375-385 (2001) · Zbl 0971.03054 [140] Wang, X.; Kerre, E., Reasonable properties for the ordering of fuzzy quantities (II), Fuzzy Sets and Systems, 118, 3, 387-405 (2001) · Zbl 0971.03055 [141] Wang, Y.; Chin, K., An eigenvector method for generating normalized interval and fuzzy weights, Applied Mathematics and Computation, 181, 2, 1257-1275 (2006) · Zbl 1102.90359 [142] Wang, Y.; Elhag, T., Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment, Expert Systems With Applications, 31, 2, 309-319 (2006) [143] Wang, Y.; Elhag, T.; Hua, Z., A modified fuzzy logarithmic least squares method for fuzzy analytic hierarchy process, Fuzzy Sets and Systems, 157, 23, 3055-3071 (2006) · Zbl 1114.90492 [144] Wang, Y.; Luo, Y.; Hua, Z., On the extent analysis method for fuzzy AHP and its applications, European Journal of Operational Research, 186, 2, 735-747 (2008) · Zbl 1144.90011 [145] Wang, Y.; Parkan, C., Multiple attribute decision making based on fuzzy preference information on alternatives: ranking and weighting, Fuzzy sets and systems, 153, 3, 331-346 (2005) · Zbl 1122.91026 [146] Wang, Y.; Yang, J.; Xu, D.; Chin, K., The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees, European Journal of Operational Research, 175, 1, 35-66 (2006) · Zbl 1137.90568 [147] Weber, E.; Bottom, W., An empirical evaluation of the transitivity, monotonicity, accounting and conjoint axioms for perceived risk, Organizational Behaviour and Human Decision Processes, 45, 253-275 (1990) [148] Whitmore, G., Third-degree stochastic dominance, American Economic Review, 60, 3, 457-459 (1970) [149] Wollenberg, E.; Edmunds, D.; Buck, L., Using scenarios to make decisions about the future: anticipatory learning for the adaptive co-management of community forests, Landscape and Urban Planning, 47, 1-2, 65-77 (2000) [150] Wright, G.; Goodwin, P., Future-focussed thinking: combining scenario planning with decision analysis, Journal of Multi-criteria Decision Analysis, 8, 311-321 (1999) · Zbl 0969.90055 [151] Xu, D., An introduction and survey of the evidential reasoning approach for multiple criteria decision analysis, Annals of Operations Research, 195, 1, 163-187 (2012) · Zbl 1251.90225 [152] Xu, D.; Yang, J.; Wang, Y., The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty, European Journal of Operational Research, 174, 3, 1914-1943 (2006) · Zbl 1103.90365 [153] Xu, R., Fuzzy least-squares priority method in the analytic hierarchy process, Fuzzy sets and systems, 112, 3, 395-404 (2000) · Zbl 0961.90138 [154] Yang, J., Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties, European Journal of Operational Research, 131, 1, 31-61 (2001) · Zbl 0979.90081 [155] Yang, J.; Wang, Y.; Xu, D.; Chin, K., The evidential reasoning approach for mada under both probabilistic and fuzzy uncertainties, European Journal of Operational Research, 171, 1, 309-343 (2006) · Zbl 1091.90525 [156] Yang, J.; Xu, D., On the evidential reasoning algorithm for multiple attribute decision analysis under uncertainty, IEEE Transactions on Systems, Man and Cybernetics, Part A, 32, 3, 289-304 (2002) [157] Yu, C., A GP-AHP method for solving group decision-making fuzzy AHP problems, Computers and Operations Research, 29, 14, 1969-2001 (2002) · Zbl 1010.90028 [158] Zank, H., Cumulative prospect theory for parametric and multiattribute utilities, Mathematics of Operations Research, 67-81 (2001) · Zbl 1073.91573 [159] Zaras, K., Rough approximation of a preference relation by a multi-attribute stochastic dominance for determinist and stochastic evaluation problems, European Journal of Operational Research, 130, 305-314 (2001) · Zbl 1068.91521 [160] Zaras, K., Rough approximation of a preference relation by a multi-attribute dominance for deterministic, stochastic and fuzzy decision problems, European Journal of Operational Research, 159, 1, 196-206 (2004) · Zbl 1065.90528 [162] Zhang, Y.; Fan, Z.; Liu, Y., A method based on stochastic dominance degrees for stochastic multiple criteria decision making, Computers & Industrial Engineering, 58, 4, 544-552 (2010) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.