zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A hybrid human dynamics model on analyzing hotspots in social networks. (English) Zbl 1253.91159
Summary: The increasing development of social networks provides a unique source for analyzing human dynamics in the modern age. In this paper, we analyze the top-one Internet forum in China (“Tianya Club”) and identify the statistical properties of hotspots, which can promptly reflect the crowd events in people’s real-life. Empirical observations indicate that the interhotspot distribution follows a power law. To further understand the mechanism of such dynamic phenomena, we propose a hybrid human dynamic model that combines “memory” of individual and “interaction” among people. To build a rich simulation and evaluate this hybrid model, we apply three different network datasets (i.e., WS network, BA network, and Karate-Club). Our simulation results are consistent with the empirical studies, which indicate that the model can provide a good understanding of the dynamic mechanism of crowd events using such social networking data. We additionally analyze the sensitivity of model parameters and find the optimal model settings.

91D30Social networks
68M11Internet topics
Full Text: DOI
[1] F. A. Haight, Handbook of the Poisson distribution, John Wiley & Sons, New York, 1967. · Zbl 0152.37706
[2] A. L. Barabási, “The origin of bursts and heavy tails in human dynamics,” Nature, vol. 435, no. 7039, pp. 207-211, 2005. · doi:10.1038/nature03459
[3] Z. Dezso, E. Almaas, A. Lukacs, B. Racz, I. Szakadat, and A.-L. Barábasi, “Dynamics of information access on the web,” Phys Rev E, vol. E73, Article ID 066132, 2006.
[4] W. Hong, X. P. Han, T. Zhou, and B. H. Wang, “Heavy-tailed statistics in short-Message communication,” Chinese Physics Letters, vol. 26, no. 2, Article ID 028902, 2009. · doi:10.1088/0256-307X/26/2/028902
[5] Q. Yan, L. Yi, and L. Wu, “Human dynamic model co-driven by interest and social identity in the microblog community,” Physica A, vol. 391, pp. 1540-1545, 2012.
[6] J. Yu, Y. Hu, M. Yu, and Z. Di, “Analyzing netizens’ view and reply behaviors on the forum,” Physica A, vol. 389, no. 16, pp. 3267-3273, 2010. · doi:10.1016/j.physa.2010.03.043
[7] T. Zhou, H. Kiet, B. Kim, et al., “Role of activity in human dynamics,” Europhysics Letters, vol. 82, no. 2, pp. 28002-28006, 2008. · doi:10.1209/0295-5075/82/28002
[8] A. Vázquez, J. G. Oliveira, Z. Dezsö, K. I. Goh, I. Kondor, and A. L. Barabási, “Modeling bursts and heavy tails in human dynamics,” Physical Review E, vol. 73, no. 3, Article ID 036127, pp. 1-19, 2006. · doi:10.1103/PhysRevE.73.036127
[9] A. Vázquez, “Exact results for the Barabási model of human dynamics,” Physical Review Letters, vol. 95, no. 24, Article ID 248701, pp. 1-4, 2005. · doi:10.1103/PhysRevLett.95.248701
[10] P. Blanchard and M. O. Hongler, “Modeling human activity in the spirit of Barábasi’s queueing systems,” Physical Review E, vol. 75, no. 2, Article ID 026102, 2007. · doi:10.1103/PhysRevE.75.026102
[11] L. Dall’Asta, M. Marsili, and P. Pin, “Optimization in task-completion networks,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2008, no. 2, Article ID P02003, 2008. · doi:10.1088/1742-5468/2008/02/P02003
[12] Z. Deng, N. Zhang, and J. Li, “Inuence of deadline on human dynamic model,” in Dynamic Model of Human Behavior, J. L. Guo, T. Zhou, N. Zhang, and J. M. Li, Eds., p. 2934, Shanghai System Science Publishing House, Hong Kong, 2008.
[13] X. P. Han, T. Zhou, and B. H. Wang, “Modeling human dynamics with adaptive interest,” New Journal of Physics, vol. 10, Article ID 073010, 2008. · doi:10.1088/1367-2630/10/7/073010
[14] M. Shang, G. Chen, S. Dai, et al., “Interest-driven model for human dynamics,” Chinese Physics Letters, vol. 27, no. 4, Article ID 048701, 2010. · doi:10.1088/0256-307X/27/4/048701
[15] T. Zhou, Z. Zhao, Z. Yang, et al., “Relative clock verifies endogenous bursts of human dynamics,” Europhysics Letters, vol. 97, p. 18006, 2012.
[16] N. Johnson, M. Spagat, J. Restrepo, et al., “From old wars to new wars and global terrorism,” arXiv:physics/0506213, 2005.
[17] N. Johnson, M. Spagat, J. A. Restrepo, et al., “Universal patterns underlying ongoing wars and terrorism,” arXiv physics: 0605035v1, 2006.
[18] N. Johnson, Complexity in Humuan Conflict, Springer, New York, NY, USA, 2008.
[19] S. Galam and S. Moscovici, “Towards a theory of collective phenomena: consensus and attitude changes in groups,” European Journal of Social Psychology, vol. 21, no. 1, pp. 49-74, 1991. · doi:10.1002/ejsp.2420210105
[20] S. Galam, “Rational group decision making: a random field Ising model at t=0,” Physica A, vol. 238, no. 1-4, pp. 66-80, 1997.
[21] S. Galam, “Sociophysics: a review of galam models,” International Journal of Modern Physics C, vol. 19, no. 3, pp. 409-440, 2008. · Zbl 1141.91668 · doi:10.1142/S0129183108012297
[22] A. Clauset, L. Heger, and M. Young, “Substitution and competition in the israelpalestine conflict,” Chinese Physics Letters, vol. 27, p. 068902, 2010.
[23] A. Vazquez, “Impact of memory on human dynamics,” Physica A, vol. 373, pp. 747-752, 2007. · doi:10.1016/j.physa.2006.04.060
[24] J. F. Zhu, X. P. Han, and B. H. Wang, “Statistical property and model for the inter-event time of terrorism attacks,” Chinese Physics Letters, vol. 27, no. 6, Article ID 068902, 2010. · doi:10.1088/0256-307X/27/6/068902
[25] J. G. Oliveira and A. Vazquez, “Impact of interactions on human dynamics,” Physica A, vol. 388, no. 2-3, pp. 187-192, 2009. · doi:10.1016/j.physa.2008.08.022
[26] Y. Wu, C. Zhou, M. Chen, J. Xiao, and J. Kurths, “Human comment dynamics in on-line social systems,” Physica A, vol. 389, no. 24, pp. 5832-5837, 2010. · doi:10.1016/j.physa.2010.08.049
[27] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world9 networks,” Nature, vol. 393, no. 6684, pp. 440-442, 1998.
[28] A. Barábasi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999. · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[29] W. Zachary, “An information ow model for conict and fission in small groups,” Journal of Anthropological Research, vol. R 33, no. 4, pp. 452-473, 1977.
[30] G. A. Miller, “The magical number seven, plus or minus two: some limits on our capacity for processing information,” Psychological Review, vol. 63, p. 8197, 1956.
[31] A. Baddeleyi, “Developments in the concept of working memory,” Psychological Bulletin, vol. 101, p. 353, 1994.