On Galois cohomology and weak approximation of connected reductive groups over fields of positive characteristic. (English) Zbl 1254.11042

Let \(k\) be a field, \(H^1(k, G)\) be the functor from the category of linear algebraic groups \(G\) over \(k\) to the category of sets. This article considers various functors related to \(H^1(k, G)\) and their relationships. When \(k\) is a number field or \(k\) is a field with char\(k =0\), many results were proved in the papers of R. E. Kottwitz [Duke Math. J. 51, 611–650 (1984; Zbl 0576.22020) and Math. Ann. 275, 365–399 (1986; Zbl 0577.10028)] and J.-L. Colliot-Thelene [J. Reine Angew. Math. 618, 77–133 (2008; Zbl 1158.14021)]. The purpose of this article is to generalize these results to the case when \(k\) is a function field of char\(k=p > 0\). The detailed proof will appear elsewhere.


11E72 Galois cohomology of linear algebraic groups
20G10 Cohomology theory for linear algebraic groups
Full Text: DOI


[1] M. V. Borovoi, Abelianization of the second nonabelian Galois cohomology, Duke Math. J. 72 (1993), no. 1, 217-239. · Zbl 0849.12011
[2] M. V. Borovoi, Abelian Galois cohomology of reductive groups, Mem. Amer. Math. 132 (1998), no. 626, 1-50. · Zbl 0918.20037
[3] F. Bruhat and J. Tits, Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), no. 3, 671-698. · Zbl 0657.20040
[4] J.-L. Colliot-Thélène, Résolutions flasques des groupes linéaires connexes, J. Reine Angew. Math. 618 (2008), 77-133. · Zbl 1158.14021
[5] J.-L. Colliot-Thélène, D. Harari et A. N. Skorobogatov, Compactification equivariante d’un tore (d’apres Brylinski et Künnemann), Expo. Math. 23 (2005) 161-170. · Zbl 1078.14076
[6] R. E. Kottwitz, Stable trace formula: cuspidal tempered terms, Duke Math. J. 51 (1984), no. 3, 611-650. · Zbl 0576.22020
[7] R. E. Kottwitz, Stable trace formula: elliptic singular terms, Math. Ann. 275 (1986), no. 3, 365-399. · Zbl 0577.10028
[8] J. S. Milne, The points on a Shimura variety modulo a prime of good reduction, The zeta functions of Picard modular surfaces , Univ. Montréal, Montreal, 1992, pp. 151-253. · Zbl 0821.14016
[9] B. C. Ngô, Le lemme fondamental pour les algèbres de Lie, Publ. Math. Inst. Hautes Études Sci. No. 111 (2010), 1-169. · Zbl 1200.22011
[10] J.-J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math. 327 (1981), 12-80. · Zbl 0468.14007
[11] J.-P. Serre, Cohomologie galoisienne , fifth edition, Lecture Notes in Math., 5, Springer, Berlin, 1994; Galois cohomology , translated from the French by Patrick Ion and revised by the author, Springer, Berlin, 1997.
[12] S. W. Shin, Counting points on Igusa varieties, Duke Math. J. 146 (2009), no. 3, 509-568. · Zbl 1218.11061
[13] N. Q. Thǎńg, Weak approximation, \(R\)-equivalence and Whitehead groups, in Algebraic \(K\)-theory (Toronto, ON, 1996) , 345-354, Fields Inst. Commun., 16, Amer. Math. Soc., Providence, RI, 1997.
[14] N. Q. Thǎńg, Weak approximation, Brauer and \(R\)-equivalence in algebraic groups over arithmetical fields, J. Math. Kyoto Univ. 40 (2000), no. 2, 247-291. · Zbl 1014.20019
[15] N. Q. Thǎńg, Weak approximation, Brauer and \(R\)-equivalence in algebraic groups over arithmetical fields. II, J. Math. Kyoto Univ. 42 (2002), no. 2, 305-316. · Zbl 1040.20038
[16] N. Q. Thǎńg, On corestriction principle in non abelian Galois cohomology over local and global fields, J. Math. Kyoto Univ. 42 (2002), no. 2, 287-304. · Zbl 1151.11322
[17] N. Q. Thǎńg, On Galois cohomology of semisimple groups over local and global fields of positive characteristic, Math. Z. 259 (2008), no. 2, 457-470. · Zbl 1154.11013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.