Mondal, Tapas Kumar Distributive lattices of \(t\)-\(k\)-Archimedean semirings. (English) Zbl 1254.16042 Discuss. Math., Gen. Algebra Appl. 31, No. 2, 147-158 (2011). Summary: A semiring \(S\) in \(\mathbb{SL}^+\) is a \(t\)-\(k\)-Archimedean semiring if for all \(a,b\in S\), \(b\in\sqrt{Sa}\cap\sqrt{aS}\). Here we introduce the \(t\)-\(k\)-Archimedean semirings and characterize the semirings which are distributive lattice (chain) of \(t\)-\(k\)-Archimedean semirings. A semiring \(S\) is a distributive lattice of \(t\)-\(k\)-Archimedean semirings if and only if \(\sqrt B\) is a \(k\)-ideal, and \(S\) is a chain of \(t\)-\(k\)-Archimedean semirings if and only if \(\sqrt B\) is a completely prime \(k\)-ideal, for every \(k\)-bi-ideal \(B\) of \(S\). Cited in 2 Documents MSC: 16Y60 Semirings 16D25 Ideals in associative algebras Keywords:\(k\)-radical, \(t\)-\(k\)-Archimedean semirings; completely prime \(k\)-ideals; semiprimary \(k\)-ideals PDF BibTeX XML Cite \textit{T. K. Mondal}, Discuss. Math., Gen. Algebra Appl. 31, No. 2, 147--158 (2011; Zbl 1254.16042) Full Text: DOI OpenURL