×

zbMATH — the first resource for mathematics

Genus two partition and correlation functions for fermionic vertex operator superalgebras. I. (English) Zbl 1254.17024
This paper is a very meaningful work for string and conformal field theory. Here the authors study the genus two partition and \(n\)-point correlation functions for vertex operator superalgebras on a genus two Riemann surface formed by sewing two tori together. A closed formula is obtained for the genus two continuous orbifold partition function in terms of an infinite dimensional determinant with entries arising from torus Szegö kernels. The authors prove that the partition function is holomorphic in the sewing parameters on a given suitable domain and describe its modular properties. Using the bosonized formalism, a new genus two Jacobi product identity is described for the Riemann theta series. The authors compute and discuss the modular properties of the generating function for all \(n\)-point functions in terms of a genus two Szegö kernel determinant. The authors also show that the Virasoro vector one point function satisfies a genus two Ward identity.

MSC:
17B69 Vertex operators; vertex operator algebras and related structures
17B68 Virasoro and related algebras
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Borcherds R.E.: Vertex algebras, Kac-Moody algebras and the Monster. Proc. Nat. Acad. Sc. 83, 3068–3071 (1986) · Zbl 0613.17012
[2] Dong C., Li H., Mason G.: Modular-invariance of trace functions in orbifold theory and generalized moonshine. Commun. Math. Phys. 214, 1–56 (2000) · Zbl 1061.17025
[3] D’Hoker E., Phong D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60, 917–1065 (1988)
[4] di Vecchia P., Hornfeck K., Frau M., Lerda A., Sciuto S.: N-string, g-loop vertex for the fermionic string. Phys. Lett. B211, 301–307 (1988)
[5] di Vecchia P., Pezzella F., Frau M., Hornfeck K., Lerda A., Sciuto S.: N-point g-loop vertex for a free fermionic theory with arbitrary spin. Nucl. Phys. B333, 635–700 (1990)
[6] Dong C., Zhao Z.: Modularity in orbifold theory for vertex operator superalgebras. Commun. Math. Phys. 260, 227–256 (2005) · Zbl 1133.17016
[7] Eguchi T., Ooguri H.: Conformal and current algebras on a general Riemann surface. Nucl. Phys. B282, 308–328 (1987)
[8] Fay, J.D.: Theta Functions on Riemann Surfaces. Lecture Notes in Mathematics, Vol. 352. Berlin-New York: Springer-Verlag, 1973 · Zbl 0281.30013
[9] Fay, J.D.: Kernel functions, analytic torsion, and moduli spaces. Mem. Amer. Math. Soc. 96(464) (1992) · Zbl 0777.32011
[10] Feingold, A.J., Frenkel, I.B., Reis, J.F.X: Spinor construction of vertex operator algebras and $${E_{8}\^{(1)}}$$ . Contemp.Math. 121, Providence, RI: Amer. Math. Soc., 1991
[11] Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc., 104(494) (1993) · Zbl 0789.17022
[12] Farkas H.M., Kra I.: Riemann Surfaces. Springer-Verlag, New York (1980) · Zbl 0475.30001
[13] Frenkel I., Lepowsky J., Meurman A.: Vertex Operator Algebras and the Monster. Academic Press, New York (1988) · Zbl 0674.17001
[14] Freidan D., Shenker S.: The analytic geometry of two dimensional conformal field theory. Nucl. Phys. B281, 509–545 (1987)
[15] Gunning R.C.: Lectures on Riemann Surfaces. Princeton Univ. Press, Princeton, NJ (1966) · Zbl 0175.36801
[16] Hawley N.S., Schiffer M.: Half-order differentials on Riemann surfaces. Acta. Math. 115, 199–236 (1966) · Zbl 0136.06701
[17] Kac, V.: Vertex Operator Algebras for Beginners. University Lecture Series, Vol. 10, Providence, RI: Amer. Math. Soc., 1998 · Zbl 0924.17023
[18] Knizhnik V.G.: Multiloop amplitudes in the theory of quantum strings and complex geometry. Sov. Phys. Usp. 32, 945–971 (1989)
[19] Kawamoto N., Namikawa Y., Tsuchiya A., Yamada Y.: Geometric realization of conformal field theory on Riemann surfaces. Commun. Math. Phys. 116, 247–308 (1988) · Zbl 0648.35080
[20] Li H.: Symmetric invariant bilinear forms on vertex operator algebras. J. Pure Appl. Alg. 96, 279–297 (1994) · Zbl 0813.17020
[21] Matsuo, A., Nagatomo, K.: Axioms for a vertex algebra and the locality of quantum fields. Math. Soc. Jap. Mem. 4, 1999 · Zbl 0928.17025
[22] Mason G., Tuite M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces I. Commun. Math. Phys. 300, 673–713 (2010) · Zbl 1226.17024
[23] Mason G., Tuite M.P.: On genus two Riemann surfaces formed from sewn tori. Commun. Math. Phys. 270, 587–634 (2007) · Zbl 1116.30027
[24] Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces II. To appear · Zbl 1226.17024
[25] Mason G., Tuite M.P.: Torus chiral n-point functions for free boson and lattice vertex operator algebras. Commun. Math. Phys. 235, 47–68 (2003) · Zbl 1020.17020
[26] Mason, G., Tuite, M.P.: Vertex operators and modular forms. A Window into Zeta and Modular Physics. eds. K. Kirsten, F. Williams, MSRI Publications 57, Cambridge: Cambridge University Press, 2010, pp. 183–278 · Zbl 1231.17021
[27] Mason G., Tuite M.P., Zuevsky A.: Torus n-point functions for $${\(\backslash\)mathbb{R}}$$ -graded vertex operator superalgebras and continuous fermion orbifolds. Commun. Math. Phys. 283, 305–342 (2008) · Zbl 1211.17026
[28] Mumford D.: Tata Lectures on Theta I and II. Birkhäuser, Boston (1983) · Zbl 0509.14049
[29] Raina A.K.: Fay’s trisecant identity and conformal field theory. Commun. Math. Phys. 122, 625–641 (1989) · Zbl 0682.14022
[30] Raina A.K., Sen S.: Grassmannians, multiplicative Ward identities and theta-function identities. Phys. Lett. B203, 256–262 (1988)
[31] Scheithauer N.: Vertex algebras, Lie algebras and superstrings. J. Alg. 200, 363–403 (1998) · Zbl 0947.17010
[32] Schiffer M.: Half-order differentials on Riemann surfaces. SIAM J. Appl. Math. 4, 922–934 (1966) · Zbl 0164.37903
[33] Springer G.: Introduction to Riemann Surfaces. Addison-Wesley, Reading, MA (1957) · Zbl 0078.06602
[34] Tuite M.P: Genus two meromorphic conformal field theory. CRM Proceedings and Lecture Notes 30, 231–251 (2001) · Zbl 1028.81051
[35] Tuite, M.P., Zuevsky, A.: The Szego Kernel on a Sewn Riemann Surface. http://arxiv.org/abs/1002.4114v1 [math.Q4], 2009, to appear in Commun. Math. Phys. · Zbl 1238.30029
[36] Tuite, M.P., Zuevsky, A.: Shifting, twisting, and intertwining Heisenberg modules. To appear · Zbl 1287.17050
[37] Tuite, M.P., Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras II. To appear · Zbl 1254.17024
[38] Tuite, M.P., Zuevsky, A.: To appear
[39] Tsuchiya A., Ueno K., Yamada Y.: Conformal field theory on universal family of stable curves with gauge symmetries. Adv. Stud. Pure. Math. 19, 459–566 (1989) · Zbl 0696.17010
[40] Ueno, K.: Introduction to conformal field theory with gauge symmetries. Geometry and Physics - Proceedings of the Conference at Aarhus Univeristy, Aaarhus, Denmark, New York: Marcel Dekker, 1997 · Zbl 0873.32022
[41] Zhu Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996) · Zbl 0854.17034
[42] Zhu Y.: Global vertex operators on Riemann surfaces. Commun. Math. Phys. 165, 485–531 (1994) · Zbl 0819.17019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.