×

Polynomial hulls and proper analytic disks. (English) Zbl 1254.32014

Summary: We show how to construct the Perron-Bremermann function by using proper analytic disks. We apply this result to the polynomial hull of a compact set \(K\) defined on the boundary of the unit ball.

MSC:

32E10 Stein spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Błocki, Z., The complex Monge–Ampère operator in hyperconvex domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. 3 (1996), 721–747. · Zbl 0878.31003
[2] Černe, M., Maximal plurisubharmonic functions and the polynomial hull of a completely circled fibration, Ark. Mat. 40 (2002), 27–45. · Zbl 1039.32014 · doi:10.1007/BF02384500
[3] Drnovec-Drnovšek, B. and Forstnerič, F., Holomorphic curves in complex spaces, Duke Math. J. 139 (2007), 203–253. · Zbl 1133.32002 · doi:10.1215/S0012-7094-07-13921-8
[4] Duval, J. and Levenberg, N., Large polynomial hulls with no analytic structure, in Complex Analysis and Geometry (Trento, 1995 ), pp. 119–122, Longman, Harlow, 1995. · Zbl 0885.32010
[5] Edigarian, A., On definitions of the pluricomplex Green function, Ann. Polon. Math. 47 (1997), 233–246. · Zbl 0909.31007
[6] Edigarian, A., Remarks on the pluricomplex Green function, Univ. Iagel. Acta Math. 37 (1999), 159–164. · Zbl 0997.32029
[7] Forstnerič, F. and Globevnik, G., Discs in pseudoconvex domains, Comment. Math. Helv. 67 (1992), 129–145. · Zbl 0779.32016 · doi:10.1007/BF02566492
[8] Forstnerič, F. and Globevnik, J., Proper holomorphic discs in \(\mathbb{C}\)2, Math. Res. Lett. 8 (2001), 257–274. · Zbl 1027.32018 · doi:10.4310/MRL.2001.v8.n3.a3
[9] Klimek, M., Pluripotential Theory, Clarendon Press, Oxford, 1991.
[10] Poletsky, E., Holomorphic currents, Indiana Univ. Math. J. 42 (1993), 85–144. · Zbl 0811.32010 · doi:10.1512/iumj.1993.42.42006
[11] Rosay, J. -P., Poletsky theory of disks on holomorphic manifolds, Indiana Univ. Math. J. 52 (2003), 157–169. · Zbl 1033.31006 · doi:10.1512/iumj.2003.52.2170
[12] Rudin, W., Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987. · Zbl 0925.00005
[13] Sibony, N., Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), 299–319. · Zbl 0622.32016 · doi:10.1215/S0012-7094-87-05516-5
[14] Słodkowski, Z., Polynomial hulls in \(\mathbb{C}\)2 and quasicircles, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (1989), 367–391.
[15] Stolzenberg, G., A hull with no analytic structure, J. Math. Mech. 12 (1963), 103–111. · Zbl 0113.29101
[16] Wermer, J., Polynomially convex hulls and analyticity, Ark. Mat. 20 (1982), 129–135. · Zbl 0491.32013 · doi:10.1007/BF02390504
[17] Wikström, F., Jensen measures and boundary values of plurisubharmonic functions, Ark. Mat. 39 (2001), 181–200. · Zbl 1021.32014 · doi:10.1007/BF02388798
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.