Combined Wronskian solutions to the 2D Toda molecule equation. (English) Zbl 1254.37045

Summary: By combining two pieces of bi-directional Wronskian solutions, molecule solutions in Wronskian form are presented for the finite, semi-infinite and infinite bilinear 2D Toda molecule equations. In the cases of finite and semi-infinite lattices, separated-variable boundary conditions are imposed. The Jacobi identities for determinants are the key tool employed in the solution formulations.


37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35Q51 Soliton equations
Full Text: DOI


[1] Hirota, R., The Direct Method in Soliton Theory (2004), Cambridge University Press
[2] Hietarinta, J., Phys. AUC, 15, 1, 31 (2005)
[3] Ma, W. X., Phys. Lett. A, 301, 35 (2002)
[4] Ma, W. X.; Maruno, K., Physica A, 343, 219 (2004)
[5] Ma, W. X., J. Phys. Soc. Jpn., 72, 3017 (2003)
[6] Ma, W. X., Chaos Solitons Fractals, 26, 1453 (2005)
[7] Ma, W. X.; You, Y., Trans. Amer. Math. Soc., 357, 1753 (2005)
[8] Li, C. X.; Ma, W. X.; Liu, X. J.; Zeng, Y. B., Inverse Problems, 23, 279 (2007)
[9] Ma, W. X.; Li, C. X.; He, J. S., Nonlinear Anal., 70, 4245 (2009)
[10] Ma, W. X., Mod. Phys. Lett. B, 22, 1815 (2008)
[11] Ma, W. X.; Abdeljabbar, A.; Asaad, M. G., Appl. Math. Comput., 217, 10016 (2011)
[12] Ma, W. X.; Huang, T. W.; Zhang, Y., Phys. Scripta, 82, 065003 (2010)
[13] Ma, W. X.; Lee, J.-H., Chaos Solitons Fractals, 42, 1356 (2009)
[14] Ma, W. X.; Fan, E. G., Comput. Math. Appl., 61, 950 (2011)
[16] Hirota, R.; Ito, M., J. Phys. Soc. Jpn., 52, 744 (1983)
[17] Leznov, A. N.; Saveliev, M. V., Physica D, 3, 62 (1981)
[18] Takagi, T., Lecture in Algebra (1965), Kyoritsu: Kyoritsu Tokyo
[19] Hirota, R., Progr. Theoret. Phys., 52, 1498 (1974)
[20] Hirota, R.; Ohta, Y.; Satsuma, J., Progr. Theoret. Phys. Suppl., 94, 59 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.