zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Martingale Morrey-Campanato spaces and fractional integrals. (English) Zbl 1254.46035
Summary: We introduce Morrey-Campanato spaces of martingales and give their basic properties. Our definition of martingale Morrey-Campanato spaces is different from martingale Lipschitz spaces introduced by Weisz, while Campanato spaces contain Lipschitz spaces as special cases. We also give the relation between these definitions. Moreover, we establish the boundedness of fractional integrals as martingale transforms on these spaces. To do this we show the boundedness of the maximal function on martingale Morrey-Campanato spaces.

MSC:
46E30Spaces of measurable functions
42B25Maximal functions, Littlewood-Paley theory
60G46Martingales and classical analysis
WorldCat.org
Full Text: DOI
References:
[1] D. L. Burkholder and R. F. Gundy, “Extrapolation and interpolation of quasi-linear operators on martingales,” Acta Mathematica, vol. 124, no. 1, pp. 249-304, 1970. · Zbl 0223.60021 · doi:10.1007/BF02394573
[2] M. Izumisawa and N. Kazamaki, “Weighted norm inequalities for martingales,” Tohoku Mathematical Journal, vol. 29, no. 1, pp. 115-124, 1977. · Zbl 0359.60050 · doi:10.2748/tmj/1178240700
[3] Y. Jiao, L. Peng, and P. Liu, “Atomic decompositions of Lorentz martingale spaces and applications,” Journal of Function Spaces and Applications, vol. 7, no. 2, pp. 153-166, 2009. · Zbl 1173.60320 · doi:10.1155/2009/465079 · http://www.jfsa.net/Vol7no2/v7n2%20Yong.pdf
[4] Y. Ren, “Some Orlicz-norm inequalities for martingales,” Statistics and Probability Letters, vol. 79, no. 9, pp. 1238-1241, 2009. · Zbl 1172.60011 · doi:10.1016/j.spl.2009.01.013
[5] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, vol. 1568 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1994. · Zbl 0796.60049 · doi:10.1007/BFb0073448
[6] M. Kikuchi, “On some inequalities for Doob decompositions in Banach function spaces,” Mathematische Zeitschrift, vol. 265, no. 4, pp. 865-887, 2010. · Zbl 1221.60064 · doi:10.1007/s00209-009-0546-3
[7] F. Weisz, “Martingale Hardy spaces for 0<P\leq 1,” Probability Theory and Related Fields, vol. 84, no. 3, pp. 361-376, 1990. · Zbl 0687.60046 · doi:10.1007/BF01197890
[8] T. Miyamoto, E. Nakai, and G. Sadasue, “Martingale Orlicz-Hardy spaces,” Mathematische Nachrichten, vol. 285, no. 5-6, pp. 670-686, 2012. · Zbl 1260.60082 · doi:10.1002/mana.201000109
[9] G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals. I,” Mathematische Zeitschrift, vol. 27, no. 1, pp. 565-606, 1928. · Zbl 54.0275.05 · doi:10.1007/BF01171116
[10] G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals. II,” Mathematische Zeitschrift, vol. 34, no. 1, pp. 403-439, 1932. · Zbl 0003.15601 · doi:10.1007/BF01180596 · eudml:168318
[11] S. L. Sobolev, “On a theorem in functional analysis,” Matematicheskii Sbornik, vol. 4, pp. 471-497, 1938 (Russian).
[12] E. M. Stein and G. Weiss, “On the theory of harmonic functions of several variables-I. The theory of Hp-spaces,” Acta Mathematica, vol. 103, no. 1-2, pp. 25-62, 1960. · Zbl 0097.28501 · doi:10.1007/BF02546524
[13] M. H. Taibleson and G. Weiss, “The molecular characterization of certain Hardy space,” Astérisque, vol. 77, pp. 67-149, 1980. · Zbl 0472.46041
[14] S. G. Krantz, “Fractional integration on Hardy spaces,” Studia Mathematica, vol. 73, no. 2, pp. 87-94, 1982. · Zbl 0504.47034 · eudml:218454
[15] E. Nakai, “Recent topics of fractional integrals,” Sugaku Expositions, vol. 20, no. 2, pp. 215-235, 2007. · Zbl 1246.26007
[16] J. Peetre, “On the theory of Lp,\lambda spaces,” Journal of Functional Analysis, vol. 4, no. 1, pp. 71-87, 1969. · Zbl 0175.42602 · doi:10.1016/0022-1236(69)90022-6
[17] D. R. Adams, “A note on Riesz potentials,” Duke Mathematical Journal, vol. 42, no. 4, pp. 765-778, 1975. · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[18] F. Chiarenza and M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function,” Rendiconti di Matematica e delle sue Applicazioni, vol. 7, no. 3-4, pp. 273-279, 1987. · Zbl 0717.42023
[19] W. Yuan, W. Sickel, and D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, vol. 2005 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010. · Zbl 1207.46002 · doi:10.1007/978-3-642-14606-0
[20] C. Watari, “Multipliers for Walsh Fourier series,” Tohoku Mathematical Journal, vol. 16, no. 3, pp. 239-251, 1964. · Zbl 0135.27502 · doi:10.2748/tmj/1178243670
[21] J.-A. Chao and H. Ombe, “Commutators on dyadic martingales,” Proceedings of the Japan Academy A, vol. 61, no. 2, pp. 35-38, 1985. · Zbl 0596.47024 · doi:10.3792/pjaa.61.35
[22] D. L. Burkholder, “Martingale transforms,” The Annals of Mathematical Statistics, vol. 37, no. 6, pp. 1494-1504, 1966. · Zbl 0306.60030 · doi:10.1214/aoms/1177699141
[23] L. I. Hedberg, “On certain convolution inequalities,” Proceedings of the American Mathematical Society, vol. 36, no. 2, pp. 505-510, 1972. · Zbl 0283.26003 · doi:10.2307/2039187
[24] E. Nakai, “On generalized fractional integrals,” Taiwanese Journal of Mathematics, vol. 5, no. 3, pp. 587-602, 2001. · Zbl 1007.42013
[25] E. Nakai, “On generalized fractional integrals on the weak Orlicz spaces, BMO\varphi , the Morrey spaces and the Campanato spaces,” in Function Spaces, Interpolation Theory and Related Topics, J. Peetre, E. Englis, A. Kufner, et al., Eds., pp. 389-401, Walter De Gruyter, Berlin, Germany, 2002. · Zbl 1021.42006
[26] J. Neveu, Discrete-Parameter Martingales, North-Holland, Amsterdam, The Netherlands, 1975.