×

Martingale Morrey-Campanato spaces and fractional integrals. (English) Zbl 1254.46035

Summary: We introduce Morrey-Campanato spaces of martingales and give their basic properties. Our definition of martingale Morrey-Campanato spaces is different from martingale Lipschitz spaces introduced by Weisz, while Campanato spaces contain Lipschitz spaces as special cases. We also give the relation between these definitions. Moreover, we establish the boundedness of fractional integrals as martingale transforms on these spaces. To do this we show the boundedness of the maximal function on martingale Morrey-Campanato spaces.

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
42B25 Maximal functions, Littlewood-Paley theory
60G46 Martingales and classical analysis
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] D. L. Burkholder and R. F. Gundy, “Extrapolation and interpolation of quasi-linear operators on martingales,” Acta Mathematica, vol. 124, no. 1, pp. 249-304, 1970. · Zbl 0223.60021 · doi:10.1007/BF02394573
[2] M. Izumisawa and N. Kazamaki, “Weighted norm inequalities for martingales,” Tohoku Mathematical Journal, vol. 29, no. 1, pp. 115-124, 1977. · Zbl 0359.60050 · doi:10.2748/tmj/1178240700
[3] Y. Jiao, L. Peng, and P. Liu, “Atomic decompositions of Lorentz martingale spaces and applications,” Journal of Function Spaces and Applications, vol. 7, no. 2, pp. 153-166, 2009. · Zbl 1173.60320 · doi:10.1155/2009/465079
[4] Y. Ren, “Some Orlicz-norm inequalities for martingales,” Statistics and Probability Letters, vol. 79, no. 9, pp. 1238-1241, 2009. · Zbl 1172.60011 · doi:10.1016/j.spl.2009.01.013
[5] F. Weisz, Martingale Hardy spaces and their applications in Fourier analysis, vol. 1568 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1994. · Zbl 0796.60049 · doi:10.1007/BFb0073448
[6] M. Kikuchi, “On some inequalities for Doob decompositions in Banach function spaces,” Mathematische Zeitschrift, vol. 265, no. 4, pp. 865-887, 2010. · Zbl 1221.60064 · doi:10.1007/s00209-009-0546-3
[7] F. Weisz, “Martingale Hardy spaces for 0<P\leq 1,” Probability Theory and Related Fields, vol. 84, no. 3, pp. 361-376, 1990. · Zbl 0687.60046 · doi:10.1007/BF01197890
[8] T. Miyamoto, E. Nakai, and G. Sadasue, “Martingale Orlicz-Hardy spaces,” Mathematische Nachrichten, vol. 285, no. 5-6, pp. 670-686, 2012. · Zbl 1260.60082 · doi:10.1002/mana.201000109
[9] G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals. I,” Mathematische Zeitschrift, vol. 27, no. 1, pp. 565-606, 1928. · doi:10.1007/BF01171116
[10] G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals. II,” Mathematische Zeitschrift, vol. 34, no. 1, pp. 403-439, 1932. · Zbl 0003.15601 · doi:10.1007/BF01180596
[11] S. L. Sobolev, “On a theorem in functional analysis,” Matematicheskii Sbornik, vol. 4, pp. 471-497, 1938 (Russian).
[12] E. M. Stein and G. Weiss, “On the theory of harmonic functions of several variables-I. The theory of Hp-spaces,” Acta Mathematica, vol. 103, no. 1-2, pp. 25-62, 1960. · Zbl 0097.28501 · doi:10.1007/BF02546524
[13] M. H. Taibleson and G. Weiss, “The molecular characterization of certain Hardy space,” Astérisque, vol. 77, pp. 67-149, 1980. · Zbl 0472.46041
[14] S. G. Krantz, “Fractional integration on Hardy spaces,” Studia Mathematica, vol. 73, no. 2, pp. 87-94, 1982. · Zbl 0504.47034
[15] E. Nakai, “Recent topics of fractional integrals,” Sugaku Expositions, vol. 20, no. 2, pp. 215-235, 2007. · Zbl 1246.26007
[16] J. Peetre, “On the theory of Lp,\lambda spaces,” Journal of Functional Analysis, vol. 4, no. 1, pp. 71-87, 1969. · Zbl 0175.42602 · doi:10.1016/0022-1236(69)90022-6
[17] D. R. Adams, “A note on Riesz potentials,” Duke Mathematical Journal, vol. 42, no. 4, pp. 765-778, 1975. · Zbl 0336.46038 · doi:10.1215/S0012-7094-75-04265-9
[18] F. Chiarenza and M. Frasca, “Morrey spaces and Hardy-Littlewood maximal function,” Rendiconti di Matematica e delle sue Applicazioni, vol. 7, no. 3-4, pp. 273-279, 1987. · Zbl 0717.42023
[19] W. Yuan, W. Sickel, and D. Yang, Morrey and Campanato meet Besov, Lizorkin and Triebel, vol. 2005 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2010. · Zbl 1207.46002 · doi:10.1007/978-3-642-14606-0
[20] C. Watari, “Multipliers for Walsh Fourier series,” Tohoku Mathematical Journal, vol. 16, no. 3, pp. 239-251, 1964. · Zbl 0135.27502 · doi:10.2748/tmj/1178243670
[21] J.-A. Chao and H. Ombe, “Commutators on dyadic martingales,” Proceedings of the Japan Academy A, vol. 61, no. 2, pp. 35-38, 1985. · Zbl 0596.47024 · doi:10.3792/pjaa.61.35
[22] D. L. Burkholder, “Martingale transforms,” The Annals of Mathematical Statistics, vol. 37, no. 6, pp. 1494-1504, 1966. · Zbl 0306.60030 · doi:10.1214/aoms/1177699141
[23] L. I. Hedberg, “On certain convolution inequalities,” Proceedings of the American Mathematical Society, vol. 36, no. 2, pp. 505-510, 1972. · Zbl 0283.26003 · doi:10.2307/2039187
[24] E. Nakai, “On generalized fractional integrals,” Taiwanese Journal of Mathematics, vol. 5, no. 3, pp. 587-602, 2001. · Zbl 1007.42013
[25] E. Nakai, “On generalized fractional integrals on the weak Orlicz spaces, BMO\varphi , the Morrey spaces and the Campanato spaces,” in Function Spaces, Interpolation Theory and Related Topics, J. Peetre, E. Englis, A. Kufner, et al., Eds., pp. 389-401, Walter De Gruyter, Berlin, Germany, 2002. · Zbl 1021.42006
[26] J. Neveu, Discrete-Parameter Martingales, North-Holland, Amsterdam, The Netherlands, 1975. · Zbl 0345.60026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.