×

Approximate solution to the time-space fractional cubic nonlinear Schrödinger equation. (English) Zbl 1254.65115

Summary: By introducing the fractional derivatives in the sense of Caputo, we use the Adomian decomposition method to construct the approximate solutions for the cubic nonlinear fractional Schrödinger equation with time and space fractional derivatives. The exact solution of the cubic nonlinear Schrödinger equation is given as a special case of our approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equation.

MSC:

65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q55 NLS equations (nonlinear Schrödinger equations)
35R11 Fractional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., Theory and Applications of Fractional Differential Equations. Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, 204 (2006), Elsevier: Elsevier Amsterdam · Zbl 1092.45003
[2] Podlubny, I., Fractional Differential Equation (1999), Academic Press: Academic Press San Diego, New York, London · Zbl 0893.65051
[3] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Gordon and Breach: Gordon and Breach Langhorne · Zbl 0818.26003
[4] El-Sayed, A. M.A., Fractional-order diffusion-wave equation, Int. J. Theory Phys., 35, 311-322 (1996) · Zbl 0846.35001
[5] Herzallah, M. A.E.; El-Sayed, A. M.A.; Baleanu, D., On the fractional-order diffusion-wave process, Rom. J. Phys., 55, 274-284 (2010) · Zbl 1231.35098
[6] Herzallah, M. A.E.; Muslih, S. I.; Baleanu, D.; Rabei, E. M., Hamilton-Jacobi and fractional like action with time scaling, Nonlinear Dyn., 66, 549-555 (2011) · Zbl 1246.26006
[7] Magin, R. L., Fractional Calculus in Bioengineering (2006), Begell House Publisher, Inc., Connecticut
[8] West, B. J.; Bologna, M.; Grigolini, P., Physics of Fractal operators (2003), Springer: Springer New York
[9] Jesus, I. S.; Tenreiro Machado, J. A., Fractional control of heat diffusion systems, Nonlinear Dyn., 54, 263-282 (2008) · Zbl 1210.80008
[10] Agrawal, O. P.; Baleanu, D., Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems, J. Vibr. Contr., 13, 269-1281 (2007) · Zbl 1182.70047
[11] Tarasov, V. E., Fractional vector calculus and fractional Maxwell’s equations, Ann. Phys., 323, 2756-2778 (2008) · Zbl 1180.78003
[12] Deng, S. F., Backlund transformation and soliton solutions for KP equation, Chaos Solitons Fract., 25, 2, 485-480 (2005) · Zbl 1070.35059
[13] Pashaev, O.; Tanoğlu, G., Vector shock soliton and the Hirota bilinear method, Chaos Solitons Fract., 26, 1, 95-105 (2005) · Zbl 1070.35056
[14] Vakhnenko, V. O.; Parkes, E. J.; Morrison, A. J., A Backlund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos Solitons Fract., 17, 4, 683-692 (2003) · Zbl 1030.37047
[15] De-Sheng, L.; Feng, G.; Hong-Qing, Z., Solving the (2+1)-dimensional higher order Broer-Kaup system via a transformation and tanh-function method, Chaos Solitons Fract., 20, 5, 1021-1025 (2004) · Zbl 1049.35157
[16] Abassy, T. A.; El-Tawil, M. A.; Saleh, H. K., The solution of KdV and mKdV equations using adomian Pade approximation, Int. J. Nonlinear Sci. Numer. Simul., 5, 327-340 (2004) · Zbl 1401.65122
[17] Liu, H. M., Generalized variational principles for ion acoustic plasma waves by He’s semi-inverse method, Chaos Solitons Fract., 23, 2, 573-576 (2005) · Zbl 1135.76597
[18] He, J. H., Variational iteration method – a kind of non-linear analytical technique: some examples, Int. J. Nonlinear Mech., 34, 699-708 (1999) · Zbl 1342.34005
[19] Adomian, G., A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 2,1, 501-544 (1988) · Zbl 0671.34053
[20] Wazwaz, A. M., A reliable technique for solving the wave equation in an infinite one-dimensional medium, Appl. Math. Comput., 92, 1, 1-7 (1998) · Zbl 0942.65107
[21] Zayed, E. M.E.; Nofal, T. A.; Gepreel, K. A., Homotopy perturbation and adomain decomposition methods for solving nonlinear Boussinesq equations, Commun. Appl. Nonlinear Anal., 15, 57-70 (2008) · Zbl 1343.65127
[22] Wang, D. S.; Zhang, H. Q., Further improved \(F\)-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation, Chaos Solitons Fract., 25, 3, 601-610 (2005) · Zbl 1083.35122
[23] Wu, X. H.; He, J. H.; solutions, Solitary, Periodic solutions and compact on-like solutions using the exp-function method, Comput. Math. Appl., 54, 7-8, 966-986 (2007) · Zbl 1143.35360
[24] He, J. H., Homotopy perturbation method for solving boundary value problems, Phys. Lett. A., 350, 1-2, 87-88 (2006) · Zbl 1195.65207
[25] Gepreel, K. A., The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations, Appl. Math. Lett., 24, 8, 1428-1434 (2011) · Zbl 1219.35347
[26] V Kanth, A. S.; Aruna, K., Two-dimensional differential transform method for solving linear and non-linear Schrodinger equations, Chaos Solitons Fract., 41, 5, 2277-2281 (2009) · Zbl 1198.81089
[27] Gross, E. P., Hydrodynamics of a superfluid condensate, J. Math. Phys., 4, 195-207 (1963)
[28] Dysthe, K. B., Modelling a rogue wave – speculations or a realistic possibility?, (Rogue Waves 2000 (2001), ´ Editions Ifremer: ´ Editions Ifremer Plouzan ´ e, France), 255-264
[29] Henderson, K. L.; Peregrine, D. H.; Dold, J. W., Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrodinger equation, Wave Motion, 29, 341-361 (1999) · Zbl 1074.76513
[30] Kelley, P. L., Self-focusing of optical beams, Phys. Rev. Lett., 15, 1005-1008 (1965)
[31] Talanov, V. I., Self modelling wave beams in a nonlinear dielectric, Radiophys. Quantum Electron., 9, 260-261 (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.